|
|
|
@ -20,20 +20,10 @@ from mindspore.ops.operations import TensorAdd
|
|
|
|
|
from mindspore import Parameter, Tensor
|
|
|
|
|
from mindspore.common.initializer import initializer
|
|
|
|
|
|
|
|
|
|
__all__ = ['MobileNetV2', 'mobilenet_v2']
|
|
|
|
|
__all__ = ['mobilenet_v2']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _make_divisible(v, divisor, min_value=None):
|
|
|
|
|
"""
|
|
|
|
|
This function is taken from the original tf repo.
|
|
|
|
|
It ensures that all layers have a channel number that is divisible by 8
|
|
|
|
|
It can be seen here:
|
|
|
|
|
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
|
|
|
|
|
:param v:
|
|
|
|
|
:param divisor:
|
|
|
|
|
:param min_value:
|
|
|
|
|
:return:
|
|
|
|
|
"""
|
|
|
|
|
if min_value is None:
|
|
|
|
|
min_value = divisor
|
|
|
|
|
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
|
|
|
|
@ -55,6 +45,7 @@ class GlobalAvgPooling(nn.Cell):
|
|
|
|
|
Examples:
|
|
|
|
|
>>> GlobalAvgPooling()
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
|
super(GlobalAvgPooling, self).__init__()
|
|
|
|
|
self.mean = P.ReduceMean(keep_dims=False)
|
|
|
|
@ -82,6 +73,7 @@ class DepthwiseConv(nn.Cell):
|
|
|
|
|
Examples:
|
|
|
|
|
>>> DepthwiseConv(16, 3, 1, 'pad', 1, channel_multiplier=1)
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __init__(self, in_planes, kernel_size, stride, pad_mode, pad, channel_multiplier=1, has_bias=False):
|
|
|
|
|
super(DepthwiseConv, self).__init__()
|
|
|
|
|
self.has_bias = has_bias
|
|
|
|
@ -126,14 +118,19 @@ class ConvBNReLU(nn.Cell):
|
|
|
|
|
Examples:
|
|
|
|
|
>>> ConvBNReLU(16, 256, kernel_size=1, stride=1, groups=1)
|
|
|
|
|
"""
|
|
|
|
|
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
|
|
|
|
|
|
|
|
|
|
def __init__(self, platform, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
|
|
|
|
|
super(ConvBNReLU, self).__init__()
|
|
|
|
|
padding = (kernel_size - 1) // 2
|
|
|
|
|
if groups == 1:
|
|
|
|
|
conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, pad_mode='pad',
|
|
|
|
|
padding=padding)
|
|
|
|
|
conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, pad_mode='pad', padding=padding)
|
|
|
|
|
else:
|
|
|
|
|
if platform == "Ascend":
|
|
|
|
|
conv = DepthwiseConv(in_planes, kernel_size, stride, pad_mode='pad', pad=padding)
|
|
|
|
|
elif platform == "GPU":
|
|
|
|
|
conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride,
|
|
|
|
|
group=in_planes, pad_mode='pad', padding=padding)
|
|
|
|
|
|
|
|
|
|
layers = [conv, nn.BatchNorm2d(out_planes), nn.ReLU6()]
|
|
|
|
|
self.features = nn.SequentialCell(layers)
|
|
|
|
|
|
|
|
|
@ -158,7 +155,8 @@ class InvertedResidual(nn.Cell):
|
|
|
|
|
Examples:
|
|
|
|
|
>>> ResidualBlock(3, 256, 1, 1)
|
|
|
|
|
"""
|
|
|
|
|
def __init__(self, inp, oup, stride, expand_ratio):
|
|
|
|
|
|
|
|
|
|
def __init__(self, platform, inp, oup, stride, expand_ratio):
|
|
|
|
|
super(InvertedResidual, self).__init__()
|
|
|
|
|
assert stride in [1, 2]
|
|
|
|
|
|
|
|
|
@ -167,12 +165,14 @@ class InvertedResidual(nn.Cell):
|
|
|
|
|
|
|
|
|
|
layers = []
|
|
|
|
|
if expand_ratio != 1:
|
|
|
|
|
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
|
|
|
|
|
layers.append(ConvBNReLU(platform, inp, hidden_dim, kernel_size=1))
|
|
|
|
|
layers.extend([
|
|
|
|
|
# dw
|
|
|
|
|
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
|
|
|
|
|
ConvBNReLU(platform, hidden_dim, hidden_dim,
|
|
|
|
|
stride=stride, groups=hidden_dim),
|
|
|
|
|
# pw-linear
|
|
|
|
|
nn.Conv2d(hidden_dim, oup, kernel_size=1, stride=1, has_bias=False),
|
|
|
|
|
nn.Conv2d(hidden_dim, oup, kernel_size=1,
|
|
|
|
|
stride=1, has_bias=False),
|
|
|
|
|
nn.BatchNorm2d(oup),
|
|
|
|
|
])
|
|
|
|
|
self.conv = nn.SequentialCell(layers)
|
|
|
|
@ -203,7 +203,8 @@ class MobileNetV2(nn.Cell):
|
|
|
|
|
Examples:
|
|
|
|
|
>>> MobileNetV2(num_classes=1000)
|
|
|
|
|
"""
|
|
|
|
|
def __init__(self, num_classes=1000, width_mult=1.,
|
|
|
|
|
|
|
|
|
|
def __init__(self, platform, num_classes=1000, width_mult=1.,
|
|
|
|
|
has_dropout=False, inverted_residual_setting=None, round_nearest=8):
|
|
|
|
|
super(MobileNetV2, self).__init__()
|
|
|
|
|
block = InvertedResidual
|
|
|
|
@ -226,16 +227,16 @@ class MobileNetV2(nn.Cell):
|
|
|
|
|
# building first layer
|
|
|
|
|
input_channel = _make_divisible(input_channel * width_mult, round_nearest)
|
|
|
|
|
self.out_channels = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
|
|
|
|
|
features = [ConvBNReLU(3, input_channel, stride=2)]
|
|
|
|
|
features = [ConvBNReLU(platform, 3, input_channel, stride=2)]
|
|
|
|
|
# building inverted residual blocks
|
|
|
|
|
for t, c, n, s in self.cfgs:
|
|
|
|
|
output_channel = _make_divisible(c * width_mult, round_nearest)
|
|
|
|
|
for i in range(n):
|
|
|
|
|
stride = s if i == 0 else 1
|
|
|
|
|
features.append(block(input_channel, output_channel, stride, expand_ratio=t))
|
|
|
|
|
features.append(block(platform, input_channel, output_channel, stride, expand_ratio=t))
|
|
|
|
|
input_channel = output_channel
|
|
|
|
|
# building last several layers
|
|
|
|
|
features.append(ConvBNReLU(input_channel, self.out_channels, kernel_size=1))
|
|
|
|
|
features.append(ConvBNReLU(platform, input_channel, self.out_channels, kernel_size=1))
|
|
|
|
|
# make it nn.CellList
|
|
|
|
|
self.features = nn.SequentialCell(features)
|
|
|
|
|
# mobilenet head
|
|
|
|
@ -268,14 +269,19 @@ class MobileNetV2(nn.Cell):
|
|
|
|
|
m.weight.set_parameter_data(Tensor(np.random.normal(0, np.sqrt(2. / n),
|
|
|
|
|
m.weight.data.shape()).astype("float32")))
|
|
|
|
|
if m.bias is not None:
|
|
|
|
|
m.bias.set_parameter_data(Tensor(np.zeros(m.bias.data.shape(), dtype="float32")))
|
|
|
|
|
m.bias.set_parameter_data(
|
|
|
|
|
Tensor(np.zeros(m.bias.data.shape(), dtype="float32")))
|
|
|
|
|
elif isinstance(m, nn.BatchNorm2d):
|
|
|
|
|
m.gamma.set_parameter_data(Tensor(np.ones(m.gamma.data.shape(), dtype="float32")))
|
|
|
|
|
m.beta.set_parameter_data(Tensor(np.zeros(m.beta.data.shape(), dtype="float32")))
|
|
|
|
|
m.gamma.set_parameter_data(
|
|
|
|
|
Tensor(np.ones(m.gamma.data.shape(), dtype="float32")))
|
|
|
|
|
m.beta.set_parameter_data(
|
|
|
|
|
Tensor(np.zeros(m.beta.data.shape(), dtype="float32")))
|
|
|
|
|
elif isinstance(m, nn.Dense):
|
|
|
|
|
m.weight.set_parameter_data(Tensor(np.random.normal(0, 0.01, m.weight.data.shape()).astype("float32")))
|
|
|
|
|
m.weight.set_parameter_data(Tensor(np.random.normal(
|
|
|
|
|
0, 0.01, m.weight.data.shape()).astype("float32")))
|
|
|
|
|
if m.bias is not None:
|
|
|
|
|
m.bias.set_parameter_data(Tensor(np.zeros(m.bias.data.shape(), dtype="float32")))
|
|
|
|
|
m.bias.set_parameter_data(
|
|
|
|
|
Tensor(np.zeros(m.bias.data.shape(), dtype="float32")))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def mobilenet_v2(**kwargs):
|