!1838 Add SparseApplyFtrl cpu kernel
Merge pull request !1838 from YuJianfeng/masterpull/1838/MERGE
commit
197251eb66
@ -0,0 +1,115 @@
|
|||||||
|
/**
|
||||||
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
#include "kernel/cpu/sparse_apply_ftrl_cpu_kernel.h"
|
||||||
|
#include "kernel/common_utils.h"
|
||||||
|
#include "device/cpu/cpu_device_address.h"
|
||||||
|
|
||||||
|
namespace mindspore {
|
||||||
|
namespace kernel {
|
||||||
|
namespace {
|
||||||
|
constexpr size_t kSparseApplyFtrlInputSize = 5;
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
void SparseApplyFtrlCPUKernel::InitKernel(const CNodePtr &kernel_node) {
|
||||||
|
MS_EXCEPTION_IF_NULL(kernel_node);
|
||||||
|
std::vector<size_t> var_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||||
|
std::vector<size_t> accum_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
|
||||||
|
std::vector<size_t> linear_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 2);
|
||||||
|
std::vector<size_t> grad_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 3);
|
||||||
|
std::vector<size_t> indices_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 4);
|
||||||
|
if (!IsSameShape(var_shape, accum_shape)) {
|
||||||
|
MS_LOG(EXCEPTION) << "var and accum should have the same shape";
|
||||||
|
}
|
||||||
|
if (!IsSameShape(var_shape, linear_shape)) {
|
||||||
|
MS_LOG(EXCEPTION) << "var and linear should have the same shape";
|
||||||
|
}
|
||||||
|
if (var_shape.empty()) {
|
||||||
|
MS_LOG(EXCEPTION) << "var must be at least 1D";
|
||||||
|
}
|
||||||
|
var_first_dim_size_ = var_shape[0];
|
||||||
|
for (size_t i = 1; i < var_shape.size(); ++i) {
|
||||||
|
if (var_shape[i] != grad_shape[i]) {
|
||||||
|
MS_LOG(EXCEPTION) << "The shape of var and grad must equal in dimension " << i;
|
||||||
|
}
|
||||||
|
var_outer_dim_size_ *= var_shape[i];
|
||||||
|
}
|
||||||
|
if (indices_shape.size() != 1) {
|
||||||
|
MS_LOG(EXCEPTION) << "indices must be a 1D vector";
|
||||||
|
}
|
||||||
|
indices_size_ = indices_shape[0];
|
||||||
|
if (grad_shape[0] != indices_size_) {
|
||||||
|
MS_LOG(ERROR) << "The first dimension of grad shape must be equal to indices";
|
||||||
|
}
|
||||||
|
lr_ = AnfAlgo::GetNodeAttr<float>(kernel_node, "lr");
|
||||||
|
if (lr_ <= 0) {
|
||||||
|
MS_LOG(EXCEPTION) << "lr should be a positive scalar";
|
||||||
|
}
|
||||||
|
l1_ = AnfAlgo::GetNodeAttr<float>(kernel_node, "l1");
|
||||||
|
if (l1_ < 0) {
|
||||||
|
MS_LOG(EXCEPTION) << "l1 should be a non-negative scalar";
|
||||||
|
}
|
||||||
|
l2_ = AnfAlgo::GetNodeAttr<float>(kernel_node, "l2");
|
||||||
|
if (l2_ < 0) {
|
||||||
|
MS_LOG(EXCEPTION) << "l2 should be a non-negative scalar";
|
||||||
|
}
|
||||||
|
lr_power_ = AnfAlgo::GetNodeAttr<float>(kernel_node, "lr_power");
|
||||||
|
if (lr_power_ > 0) {
|
||||||
|
MS_LOG(EXCEPTION) << "lr_power should be a non-positive scalar";
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
bool SparseApplyFtrlCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
|
||||||
|
const std::vector<kernel::AddressPtr> & /*workspace*/,
|
||||||
|
const std::vector<kernel::AddressPtr> & /*outputs*/) {
|
||||||
|
if (inputs.size() < kSparseApplyFtrlInputSize) {
|
||||||
|
MS_LOG(EXCEPTION) << "error input output size!";
|
||||||
|
}
|
||||||
|
|
||||||
|
auto var = reinterpret_cast<float *>(inputs[0]->addr);
|
||||||
|
auto accum = reinterpret_cast<float *>(inputs[1]->addr);
|
||||||
|
auto linear = reinterpret_cast<float *>(inputs[2]->addr);
|
||||||
|
auto grad = reinterpret_cast<float *>(inputs[3]->addr);
|
||||||
|
auto indices = reinterpret_cast<int *>(inputs[4]->addr);
|
||||||
|
|
||||||
|
for (size_t i = 0; i < indices_size_; ++i) {
|
||||||
|
int index = indices[i];
|
||||||
|
if ((size_t)index >= var_first_dim_size_) {
|
||||||
|
MS_LOG(EXCEPTION) << "Index " << index << " in indices is out of range";
|
||||||
|
}
|
||||||
|
for (size_t j = var_outer_dim_size_ * index, k = var_outer_dim_size_ * i; j < var_outer_dim_size_ * (index + 1);
|
||||||
|
++j, ++k) {
|
||||||
|
auto accum_new = accum[j] + grad[k] * grad[k];
|
||||||
|
if (lr_power_ == -0.5) {
|
||||||
|
linear[j] += grad[k] - (sqrt(accum_new) - sqrt(accum[j])) / lr_ * var[j];
|
||||||
|
} else {
|
||||||
|
linear[j] += grad[k] - (pow(accum_new, -lr_power_) - pow(accum[j], -lr_power_)) / lr_ * var[j];
|
||||||
|
}
|
||||||
|
auto x = Sign(linear[j]) * l1_ - linear[j];
|
||||||
|
float y;
|
||||||
|
if (lr_power_ == -0.5) {
|
||||||
|
y = sqrt(accum_new) / lr_ + 2 * l2_;
|
||||||
|
} else {
|
||||||
|
y = pow(accum_new, -lr_power_) / lr_ + 2 * l2_;
|
||||||
|
}
|
||||||
|
auto pre_shrink = x / y;
|
||||||
|
var[j] = abs(linear[j]) > l1_ ? pre_shrink : 0;
|
||||||
|
accum[j] = accum_new;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
} // namespace kernel
|
||||||
|
} // namespace mindspore
|
@ -0,0 +1,59 @@
|
|||||||
|
/**
|
||||||
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
#ifndef MINDSPORE_CCSRC_KERNEL_CPU_SPARSE_APPLY_FTRL_CPU_KERNEL_H_
|
||||||
|
#define MINDSPORE_CCSRC_KERNEL_CPU_SPARSE_APPLY_FTRL_CPU_KERNEL_H_
|
||||||
|
|
||||||
|
#include <vector>
|
||||||
|
#include "kernel/cpu/cpu_kernel.h"
|
||||||
|
#include "kernel/cpu/cpu_kernel_factory.h"
|
||||||
|
|
||||||
|
namespace mindspore {
|
||||||
|
namespace kernel {
|
||||||
|
class SparseApplyFtrlCPUKernel : public CPUKernel {
|
||||||
|
public:
|
||||||
|
SparseApplyFtrlCPUKernel() = default;
|
||||||
|
~SparseApplyFtrlCPUKernel() override = default;
|
||||||
|
|
||||||
|
void InitKernel(const CNodePtr &kernel_node) override;
|
||||||
|
|
||||||
|
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||||
|
const std::vector<AddressPtr> &outputs) override;
|
||||||
|
|
||||||
|
private:
|
||||||
|
size_t indices_size_{0};
|
||||||
|
size_t var_first_dim_size_{0};
|
||||||
|
size_t var_outer_dim_size_{1};
|
||||||
|
float lr_{0};
|
||||||
|
float l1_{0};
|
||||||
|
float l2_{0};
|
||||||
|
float lr_power_{0};
|
||||||
|
};
|
||||||
|
|
||||||
|
MS_REG_CPU_KERNEL(SparseApplyFtrl,
|
||||||
|
KernelAttr()
|
||||||
|
.AddInputAttr(kNumberTypeFloat32)
|
||||||
|
.AddInputAttr(kNumberTypeFloat32)
|
||||||
|
.AddInputAttr(kNumberTypeFloat32)
|
||||||
|
.AddInputAttr(kNumberTypeFloat32)
|
||||||
|
.AddInputAttr(kNumberTypeInt32)
|
||||||
|
.AddOutputAttr(kNumberTypeFloat32)
|
||||||
|
.AddOutputAttr(kNumberTypeFloat32)
|
||||||
|
.AddOutputAttr(kNumberTypeFloat32),
|
||||||
|
SparseApplyFtrlCPUKernel);
|
||||||
|
} // namespace kernel
|
||||||
|
} // namespace mindspore
|
||||||
|
|
||||||
|
#endif // MINDSPORE_CCSRC_KERNEL_CPU_SPARSE_APPLY_FTRL_CPU_KERNEL_H_
|
@ -0,0 +1,50 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import mindspore.context as context
|
||||||
|
import mindspore.nn as nn
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.common.parameter import Parameter
|
||||||
|
from mindspore.ops import operations as P
|
||||||
|
import mindspore.common.dtype as mstype
|
||||||
|
|
||||||
|
|
||||||
|
class Net(nn.Cell):
|
||||||
|
def __init__(self):
|
||||||
|
super(Net, self).__init__()
|
||||||
|
self.sparse_apply_ftrl = P.SparseApplyFtrl(lr=0.001, l1=0.0, l2=0.0, lr_power=-0.5)
|
||||||
|
self.var = Parameter(Tensor(np.ones([3, 3, 3]).astype(np.float32)), name="var")
|
||||||
|
self.accum = Parameter(Tensor(np.ones([3, 3, 3]).astype(np.float32)), name="accum")
|
||||||
|
self.linear = Parameter(Tensor(np.ones([3, 3, 3]).astype(np.float32)), name="linear")
|
||||||
|
|
||||||
|
def construct(self, grad, indices):
|
||||||
|
out = self.sparse_apply_ftrl(self.var, self.accum, self.linear, grad, indices)
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
def test_net():
|
||||||
|
gradient = Tensor(np.random.rand(3, 3, 3).astype(np.float32))
|
||||||
|
indices = Tensor([0, 1, 2], mstype.int32)
|
||||||
|
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||||
|
sparse_apply_ftrl = Net()
|
||||||
|
output = sparse_apply_ftrl(gradient, indices)
|
||||||
|
print(output[0].asnumpy())
|
||||||
|
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||||
|
sparse_apply_ftrl = Net()
|
||||||
|
output = sparse_apply_ftrl(gradient, indices)
|
||||||
|
print(output[0].asnumpy())
|
Loading…
Reference in new issue