!1257 Implicit type conversion
Merge pull request !1257 from candanzg/implicit_type_conversion2pull/1257/MERGE
commit
19ce0c372a
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,244 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""multitype_ops directory test case"""
|
||||||
|
import numpy as np
|
||||||
|
from functools import partial, reduce
|
||||||
|
|
||||||
|
import mindspore.nn as nn
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore import dtype as mstype
|
||||||
|
from mindspore.ops import functional as F, composite as C
|
||||||
|
import mindspore.context as context
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
class TensorIntAutoCast(nn.Cell):
|
||||||
|
def __init__(self,):
|
||||||
|
super(TensorIntAutoCast, self).__init__()
|
||||||
|
self.i = 2
|
||||||
|
def construct(self, t):
|
||||||
|
z = F.tensor_mul(t, self.i)
|
||||||
|
return z
|
||||||
|
|
||||||
|
|
||||||
|
class TensorFPAutoCast(nn.Cell):
|
||||||
|
def __init__(self,):
|
||||||
|
super(TensorFPAutoCast, self).__init__()
|
||||||
|
self.f = 1.2
|
||||||
|
def construct(self, t):
|
||||||
|
z = F.tensor_mul(t, self.f)
|
||||||
|
return z
|
||||||
|
|
||||||
|
|
||||||
|
class TensorBoolAutoCast(nn.Cell):
|
||||||
|
def __init__(self,):
|
||||||
|
super(TensorBoolAutoCast, self).__init__()
|
||||||
|
self.f = True
|
||||||
|
def construct(self, t):
|
||||||
|
z = F.tensor_mul(t, self.f)
|
||||||
|
return z
|
||||||
|
|
||||||
|
class TensorAutoCast(nn.Cell):
|
||||||
|
def __init__(self,):
|
||||||
|
super(TensorAutoCast, self).__init__()
|
||||||
|
def construct(self, t1, t2):
|
||||||
|
z = F.tensor_mul(t1, t2)
|
||||||
|
return z
|
||||||
|
|
||||||
|
|
||||||
|
def test_tensor_auto_cast():
|
||||||
|
context.set_context(mode=context.GRAPH_MODE)
|
||||||
|
t0 = Tensor([True, False], mstype.bool_)
|
||||||
|
t_uint8 = Tensor(np.ones([2, 1, 2, 2]), mstype.uint8)
|
||||||
|
t_int8 = Tensor(np.ones([2, 1, 2, 2]), mstype.int8)
|
||||||
|
t_int16 = Tensor(np.ones([2, 1, 2, 2]), mstype.int16)
|
||||||
|
t_int32 = Tensor(np.ones([2, 1, 2, 2]), mstype.int32)
|
||||||
|
t_int64 = Tensor(np.ones([2, 1, 2, 2]), mstype.int64)
|
||||||
|
t_fp16 = Tensor(np.ones([2, 1, 2, 2]), mstype.float16)
|
||||||
|
t_fp32 = Tensor(np.ones([2, 1, 2, 2]), mstype.float32)
|
||||||
|
t_fp64 = Tensor(np.ones([2, 1, 2, 2]), mstype.float64)
|
||||||
|
net = TensorAutoCast()
|
||||||
|
rs = net(t_uint8, t_int8)
|
||||||
|
assert rs.dtype() == mstype.int16
|
||||||
|
rs = net(t_uint8, t_int16)
|
||||||
|
assert rs.dtype() == mstype.int16
|
||||||
|
rs = net(t_uint8, t_int32)
|
||||||
|
assert rs.dtype() == mstype.int32
|
||||||
|
rs = net(t_uint8, t_int64)
|
||||||
|
assert rs.dtype() == mstype.int64
|
||||||
|
rs = net(t_int8, t_int16)
|
||||||
|
assert rs.dtype() == mstype.int16
|
||||||
|
rs = net(t_int8, t_int32)
|
||||||
|
assert rs.dtype() == mstype.int32
|
||||||
|
rs = net(t_int8, t_int64)
|
||||||
|
assert rs.dtype() == mstype.int64
|
||||||
|
rs = net(t_int16, t_int32)
|
||||||
|
assert rs.dtype() == mstype.int32
|
||||||
|
rs = net(t_int16, t_int64)
|
||||||
|
assert rs.dtype() == mstype.int64
|
||||||
|
rs = net(t_int32, t_int64)
|
||||||
|
assert rs.dtype() == mstype.int64
|
||||||
|
|
||||||
|
rs = net(t_fp16, t_fp32)
|
||||||
|
assert rs.dtype() == mstype.float32
|
||||||
|
rs = net(t_fp16, t_fp64)
|
||||||
|
assert rs.dtype() == mstype.float64
|
||||||
|
rs = net(t_fp32, t_fp64)
|
||||||
|
assert rs.dtype() == mstype.float64
|
||||||
|
|
||||||
|
rs = net(t_uint8, t_fp16)
|
||||||
|
assert rs.dtype() == mstype.float16
|
||||||
|
rs = net(t_uint8, t_fp32)
|
||||||
|
assert rs.dtype() == mstype.float32
|
||||||
|
rs = net(t_uint8, t_fp64)
|
||||||
|
assert rs.dtype() == mstype.float64
|
||||||
|
rs = net(t_int8, t_fp64)
|
||||||
|
assert rs.dtype() == mstype.float64
|
||||||
|
rs = net(t_int16, t_fp64)
|
||||||
|
assert rs.dtype() == mstype.float64
|
||||||
|
rs = net(t_int32, t_fp64)
|
||||||
|
assert rs.dtype() == mstype.float64
|
||||||
|
rs = net(t_int64, t_fp64)
|
||||||
|
assert rs.dtype() == mstype.float64
|
||||||
|
|
||||||
|
rs = net(t_fp16, t_int8)
|
||||||
|
assert rs.dtype() == mstype.float16
|
||||||
|
rs = net(t_fp16, t_uint8)
|
||||||
|
assert rs.dtype() == mstype.float16
|
||||||
|
rs = net(t_fp16, t_int16)
|
||||||
|
assert rs.dtype() == mstype.float16
|
||||||
|
rs = net(t_fp16, t_int32)
|
||||||
|
assert rs.dtype() == mstype.float16
|
||||||
|
rs = net(t_fp16, t_int64)
|
||||||
|
assert rs.dtype() == mstype.float16
|
||||||
|
|
||||||
|
tint = TensorIntAutoCast()
|
||||||
|
rs = tint(t_uint8)
|
||||||
|
assert rs.dtype() == mstype.uint8
|
||||||
|
rs = tint(t_int8)
|
||||||
|
assert rs.dtype() == mstype.int8
|
||||||
|
rs = tint(t_int16)
|
||||||
|
assert rs.dtype() == mstype.int16
|
||||||
|
rs = tint(t_int32)
|
||||||
|
assert rs.dtype() == mstype.int32
|
||||||
|
rs = tint(t_int64)
|
||||||
|
assert rs.dtype() == mstype.int64
|
||||||
|
rs = tint(t_fp16)
|
||||||
|
assert rs.dtype() == mstype.float16
|
||||||
|
rs = tint(t_fp32)
|
||||||
|
assert rs.dtype() == mstype.float32
|
||||||
|
rs = tint(t_fp64)
|
||||||
|
assert rs.dtype() == mstype.float64
|
||||||
|
tfp = TensorFPAutoCast()
|
||||||
|
rs = tfp(t_uint8)
|
||||||
|
assert rs.dtype() == mstype.float32
|
||||||
|
rs = tfp(t_int8)
|
||||||
|
assert rs.dtype() == mstype.float32
|
||||||
|
rs = tfp(t_int16)
|
||||||
|
assert rs.dtype() == mstype.float32
|
||||||
|
rs = tfp(t_int32)
|
||||||
|
assert rs.dtype() == mstype.float32
|
||||||
|
rs = tfp(t_int64)
|
||||||
|
assert rs.dtype() == mstype.float32
|
||||||
|
rs = tfp(t_fp16)
|
||||||
|
assert rs.dtype() == mstype.float32
|
||||||
|
rs = tfp(t_fp32)
|
||||||
|
assert rs.dtype() == mstype.float32
|
||||||
|
rs = tfp(t_fp64)
|
||||||
|
assert rs.dtype() == mstype.float64
|
||||||
|
|
||||||
|
t_uint16 = Tensor(np.ones([2, 1, 2, 2]), mstype.uint16)
|
||||||
|
t_uint32 = Tensor(np.ones([2, 1, 2, 2]), mstype.uint32)
|
||||||
|
t_uint64 = Tensor(np.ones([2, 1, 2, 2]), mstype.uint64)
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
net(t_uint16, t_uint8)
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
net(t_uint16, t_int8)
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
net(t_uint16, t_int16)
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
net(t_uint16, t_int32)
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
net(t_uint16, t_int64)
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
net(t_uint32, t_uint8)
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
net(t_uint32, t_int8)
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
net(t_uint32, t_int16)
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
net(t_uint32, t_int32)
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
net(t_uint32, t_int64)
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
net(t_uint64, t_uint8)
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
net(t_uint64, t_int8)
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
net(t_uint64, t_int16)
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
net(t_uint64, t_int32)
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
net(t_uint64, t_int64)
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
net(t_uint16, t_fp16)
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
net(t_uint16, t_fp32)
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
net(t_uint16, t_fp64)
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
net(t_uint32, t_fp16)
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
net(t_uint32, t_fp32)
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
net(t_uint32, t_fp64)
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
net(t_uint64, t_fp16)
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
net(t_uint64, t_fp32)
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
net(t_uint64, t_fp64)
|
||||||
|
|
||||||
|
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
tfp(t_uint16)
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
tfp(t_uint32)
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
tfp(t_uint64)
|
||||||
|
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
tint(t_uint16)
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
tint(t_uint32)
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
tint(t_uint64)
|
||||||
|
|
||||||
|
bnet = TensorBoolAutoCast()
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
bnet(t_uint8)
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
bnet(t_int8)
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
bnet(t_int16)
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
bnet(t_int32)
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
bnet(t_int64)
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
bnet(t_fp16)
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
bnet(t_fp32)
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
bnet(t_fp64)
|
File diff suppressed because it is too large
Load Diff
Loading…
Reference in new issue