commit
1dd600d416
@ -0,0 +1,114 @@
|
|||||||
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""Perplexity"""
|
||||||
|
import math
|
||||||
|
import numpy as np
|
||||||
|
from mindspore._checkparam import Validator as validator
|
||||||
|
from .metric import Metric
|
||||||
|
|
||||||
|
|
||||||
|
class Perplexity(Metric):
|
||||||
|
r"""
|
||||||
|
Computes perplexity. Perplexity is a measurement about how well a probability distribution or a model predicts a
|
||||||
|
sample. A low perplexity indicates the model can predict the sample well. The function is shown as follows:
|
||||||
|
|
||||||
|
.. math::
|
||||||
|
b^{\\big(-\\frac{1}{N} \\sum_{i=1}^N \\log_b q(x_i) \\big)}
|
||||||
|
= \\exp \\big(-\\frac{1}{N} \\sum_{i=1}^N \\log q(x_i)\\big)
|
||||||
|
|
||||||
|
Args:
|
||||||
|
ignore_label (int): Index of an invalid label to be ignored when counting. If set to `None`, it will include all
|
||||||
|
entries. Default: -1.
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
>>> x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
|
||||||
|
>>> y = Tensor(np.array([1, 0, 1]))
|
||||||
|
>>> metric = Perplexity(ignore_label=None)
|
||||||
|
>>> metric.clear()
|
||||||
|
>>> metric.update(x, y)
|
||||||
|
>>> perplexity = metric.eval()
|
||||||
|
2.231443166940565
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, ignore_label=None):
|
||||||
|
super(Perplexity, self).__init__()
|
||||||
|
|
||||||
|
if ignore_label is None:
|
||||||
|
self.ignore_label = ignore_label
|
||||||
|
else:
|
||||||
|
self.ignore_label = validator.check_value_type("ignore_label", ignore_label, [int])
|
||||||
|
self.clear()
|
||||||
|
|
||||||
|
def clear(self):
|
||||||
|
"""Clears the internal evaluation result."""
|
||||||
|
self._sum_metric = 0.0
|
||||||
|
self._num_inst = 0
|
||||||
|
|
||||||
|
def update(self, *inputs):
|
||||||
|
"""
|
||||||
|
Updates the internal evaluation result: math:preds and :math:labels.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
inputs: Input `preds` and `labels`. `preds` and `labels` are Tensor, list or numpy.ndarray.
|
||||||
|
`preds` is the predicted values, `labels` is the label of the data.
|
||||||
|
The shape of `preds` and `labels` are both :math:`(N, C)`.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: If the number of the inputs is not 2.
|
||||||
|
"""
|
||||||
|
if len(inputs) != 2:
|
||||||
|
raise ValueError('Perplexity needs 2 inputs (preds, labels), but got {}.'.format(len(inputs)))
|
||||||
|
|
||||||
|
preds = [self._convert_data(inputs[0])]
|
||||||
|
labels = [self._convert_data(inputs[1])]
|
||||||
|
|
||||||
|
if len(preds) != len(labels):
|
||||||
|
raise RuntimeError('preds and labels should have the same length, but the length of preds is{}, '
|
||||||
|
'the length of labels is {}.'.format(len(preds), len(labels)))
|
||||||
|
|
||||||
|
loss = 0.
|
||||||
|
num = 0
|
||||||
|
for label, pred in zip(labels, preds):
|
||||||
|
if label.size != pred.size / pred.shape[-1]:
|
||||||
|
raise RuntimeError("shape mismatch: label shape should be equal to pred shape, but got label shape "
|
||||||
|
"is {}, pred shape is {}.".format(label.shape, pred.shape))
|
||||||
|
label = label.reshape((label.size,))
|
||||||
|
label_expand = label.astype(int)
|
||||||
|
label_expand = np.expand_dims(label_expand, axis=1)
|
||||||
|
first_indices = np.arange(label_expand.shape[0])[:, None]
|
||||||
|
pred = np.squeeze(pred[first_indices, label_expand])
|
||||||
|
if self.ignore_label is not None:
|
||||||
|
ignore = (label == self.ignore_label).astype(pred.dtype)
|
||||||
|
num -= np.sum(ignore)
|
||||||
|
pred = pred * (1 - ignore) + ignore
|
||||||
|
loss -= np.sum(np.log(np.maximum(1e-10, pred)))
|
||||||
|
num += pred.size
|
||||||
|
self._sum_metric += loss
|
||||||
|
self._num_inst += num
|
||||||
|
|
||||||
|
def eval(self):
|
||||||
|
r"""
|
||||||
|
Returns the current evaluation result.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
float, the computed result.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
RuntimeError: If the sample size is 0.
|
||||||
|
"""
|
||||||
|
if self._num_inst == 0:
|
||||||
|
raise RuntimeError('Perplexity can not be calculated, because the number of samples is 0.')
|
||||||
|
|
||||||
|
return math.exp(self._sum_metric / self._num_inst)
|
@ -0,0 +1,65 @@
|
|||||||
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
# """test_perplexity"""
|
||||||
|
|
||||||
|
import math
|
||||||
|
import numpy as np
|
||||||
|
import pytest
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.nn.metrics import get_metric_fn, Perplexity
|
||||||
|
|
||||||
|
|
||||||
|
def test_perplexity():
|
||||||
|
"""test_perplexity"""
|
||||||
|
x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
|
||||||
|
y = Tensor(np.array([1, 0, 1]))
|
||||||
|
metric = get_metric_fn('perplexity')
|
||||||
|
metric.clear()
|
||||||
|
metric.update(x, y)
|
||||||
|
perplexity = metric.eval()
|
||||||
|
|
||||||
|
assert math.isclose(perplexity, 2.231443166940565, abs_tol=0.001)
|
||||||
|
|
||||||
|
|
||||||
|
def test_perplexity_update1():
|
||||||
|
x = Tensor(np.array([[0.2, 0.5, 0.7], [0.3, 0.1, 0.2], [0.9, 0.6, 0.5]]))
|
||||||
|
metric = Perplexity()
|
||||||
|
metric.clear()
|
||||||
|
|
||||||
|
with pytest.raises(ValueError):
|
||||||
|
metric.update(x)
|
||||||
|
|
||||||
|
|
||||||
|
def test_perplexity_update2():
|
||||||
|
x = Tensor(np.array([[0.2, 0.5, 0.7], [0.3, 0.1, 0.2], [0.9, 0.6, 0.5]]))
|
||||||
|
y = Tensor(np.array([1, 0]))
|
||||||
|
metric = Perplexity()
|
||||||
|
metric.clear()
|
||||||
|
|
||||||
|
with pytest.raises(RuntimeError):
|
||||||
|
metric.update(x, y)
|
||||||
|
|
||||||
|
|
||||||
|
def test_perplexity_init():
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
Perplexity(ignore_label='abc')
|
||||||
|
|
||||||
|
|
||||||
|
def test_perplexity_runtime():
|
||||||
|
metric = Perplexity()
|
||||||
|
metric.clear()
|
||||||
|
|
||||||
|
with pytest.raises(RuntimeError):
|
||||||
|
metric.eval()
|
Loading…
Reference in new issue