commit
						226f019e45
					
				@ -0,0 +1,146 @@
 | 
				
			||||
# Copyright 2019 Huawei Technologies Co., Ltd
 | 
				
			||||
#
 | 
				
			||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||
# you may not use this file except in compliance with the License.
 | 
				
			||||
# You may obtain a copy of the License at
 | 
				
			||||
#
 | 
				
			||||
# http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||
#
 | 
				
			||||
# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||
# See the License for the specific language governing permissions and
 | 
				
			||||
# limitations under the License.
 | 
				
			||||
 | 
				
			||||
import numpy as np
 | 
				
			||||
 | 
				
			||||
import mindspore as ms
 | 
				
			||||
import mindspore.nn as nn
 | 
				
			||||
from mindspore import Tensor
 | 
				
			||||
from mindspore import context
 | 
				
			||||
from mindspore.common.api import _executor
 | 
				
			||||
from mindspore.context import set_auto_parallel_context
 | 
				
			||||
from mindspore.ops import composite as C
 | 
				
			||||
from mindspore.ops import operations as P
 | 
				
			||||
from mindspore.common.initializer import initializer
 | 
				
			||||
from mindspore.common.parameter import Parameter
 | 
				
			||||
from tests.ut.python.ops.test_math_ops import VirtualLoss
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
class NetWithLoss(nn.Cell):
 | 
				
			||||
    def __init__(self, network):
 | 
				
			||||
        super(NetWithLoss, self).__init__()
 | 
				
			||||
        self.loss = VirtualLoss()
 | 
				
			||||
        self.network = network
 | 
				
			||||
 | 
				
			||||
    def construct(self, x):
 | 
				
			||||
        predict = self.network(x)
 | 
				
			||||
        return self.loss(predict)
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
class GradWrap(nn.Cell):
 | 
				
			||||
    def __init__(self, network):
 | 
				
			||||
        super(GradWrap, self).__init__()
 | 
				
			||||
        self.network = network
 | 
				
			||||
 | 
				
			||||
    def construct(self, x):
 | 
				
			||||
        return C.grad_all(self.network)(x)
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
def compile_net(net, x):
 | 
				
			||||
    net.set_auto_parallel()
 | 
				
			||||
    _executor.compile(net, x)
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
class Net(nn.Cell):
 | 
				
			||||
    def __init__(self, strategy1, strategy2, strategy3, strategy4, strategy5):
 | 
				
			||||
        super().__init__()
 | 
				
			||||
        self.query_w = Parameter(initializer(
 | 
				
			||||
            "normal", [8, 16], ms.float32), name='query')
 | 
				
			||||
        self.query = P.MatMul().set_strategy(strategy1)
 | 
				
			||||
 | 
				
			||||
        self.key_w = Parameter(initializer(
 | 
				
			||||
            "normal", [8, 16], ms.float32), name='key')
 | 
				
			||||
        self.key = P.MatMul().set_strategy(strategy2)
 | 
				
			||||
 | 
				
			||||
        self.value_w = Parameter(initializer(
 | 
				
			||||
            "normal", [8, 16], ms.float32), name='value')
 | 
				
			||||
        self.value = P.MatMul().set_strategy(strategy3)
 | 
				
			||||
 | 
				
			||||
        self.score = P.MatMul().set_strategy(strategy4)
 | 
				
			||||
        self.context = P.MatMul().set_strategy(strategy5)
 | 
				
			||||
        self.transpose1 = P.Transpose()
 | 
				
			||||
        self.transpose2 = P.Transpose()
 | 
				
			||||
        self.relu = P.ReLU()
 | 
				
			||||
 | 
				
			||||
    def construct(self, x):
 | 
				
			||||
        q = self.query(x, self.query_w)
 | 
				
			||||
        k = self.key(x, self.key_w)
 | 
				
			||||
        v = self.value(x, self.value_w)
 | 
				
			||||
 | 
				
			||||
        k = self.transpose1(k, (1, 0))
 | 
				
			||||
        s = self.score(q, k)
 | 
				
			||||
 | 
				
			||||
        v = self.transpose2(v, (1, 0))
 | 
				
			||||
        c = self.context(v, s)
 | 
				
			||||
        out = self.relu(c)
 | 
				
			||||
 | 
				
			||||
        return out
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
def test_self_attention_standalone():
 | 
				
			||||
    set_auto_parallel_context(device_num=8, global_rank=0)
 | 
				
			||||
    context.set_auto_parallel_context(parallel_mode="stand_alone")
 | 
				
			||||
    net = GradWrap(NetWithLoss(
 | 
				
			||||
        Net(None, None, None, None, None)))
 | 
				
			||||
 | 
				
			||||
    x = Tensor(np.ones([32, 8]), dtype=ms.float32)
 | 
				
			||||
 | 
				
			||||
    compile_net(net, x)
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
def test_self_attention_semi():
 | 
				
			||||
    set_auto_parallel_context(device_num=8, global_rank=0)
 | 
				
			||||
    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
 | 
				
			||||
 | 
				
			||||
    strategy1 = ((2, 2), (2, 2))
 | 
				
			||||
    strategy2 = ((2, 2), (2, 2))
 | 
				
			||||
    strategy3 = ((2, 2), (2, 2))
 | 
				
			||||
    strategy4 = ((2, 4), (4, 1))
 | 
				
			||||
    strategy5 = ((2, 1), (1, 4))
 | 
				
			||||
 | 
				
			||||
    net = GradWrap(NetWithLoss(
 | 
				
			||||
        Net(strategy1, strategy2, strategy3, strategy4, strategy5)))
 | 
				
			||||
 | 
				
			||||
    x = Tensor(np.ones([32, 8]), dtype=ms.float32)
 | 
				
			||||
 | 
				
			||||
    compile_net(net, x)
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
def test_self_attention_dp():
 | 
				
			||||
    set_auto_parallel_context(device_num=8, global_rank=0)
 | 
				
			||||
    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
 | 
				
			||||
 | 
				
			||||
    strategy1 = ((8, 1), (1, 1))
 | 
				
			||||
    strategy2 = ((8, 1), (1, 1))
 | 
				
			||||
    strategy3 = ((8, 1), (1, 1))
 | 
				
			||||
    strategy4 = ((8, 1), (1, 1))
 | 
				
			||||
    strategy5 = ((8, 1), (1, 1))
 | 
				
			||||
 | 
				
			||||
    net = GradWrap(NetWithLoss(
 | 
				
			||||
        Net(strategy1, strategy2, strategy3, strategy4, strategy5)))
 | 
				
			||||
 | 
				
			||||
    x = Tensor(np.ones([32, 8]), dtype=ms.float32)
 | 
				
			||||
 | 
				
			||||
    compile_net(net, x)
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
def test_self_attention_auto():
 | 
				
			||||
    set_auto_parallel_context(device_num=8, global_rank=0)
 | 
				
			||||
    context.set_auto_parallel_context(parallel_mode="auto_parallel")
 | 
				
			||||
    net = GradWrap(NetWithLoss(
 | 
				
			||||
        Net(None, None, None, None, None)))
 | 
				
			||||
 | 
				
			||||
    x = Tensor(np.ones([32, 8]), dtype=ms.float32)
 | 
				
			||||
 | 
				
			||||
    compile_net(net, x)
 | 
				
			||||
					Loading…
					
					
				
		Reference in new issue