add_channel_to_attr

pull/8526/head
wanyiming 4 years ago
parent f957e4f588
commit 237bcfd36b

@ -188,10 +188,10 @@ class Dense(Cell):
ValueError: If weight_init or bias_init shape is incorrect. ValueError: If weight_init or bias_init shape is incorrect.
Inputs: Inputs:
- **input** (Tensor) - Tensor of shape :math:`(N, in\_channels)`. - **input** (Tensor) - Tensor of shape :math:`(*, in\_channels)`.
Outputs: Outputs:
Tensor of shape :math:`(N, out\_channels)`. Tensor of shape :math:`(*, out\_channels)`.
Examples: Examples:
>>> input = Tensor(np.random.randint(0, 255, [2, 3]), mindspore.float32) >>> input = Tensor(np.random.randint(0, 255, [2, 3]), mindspore.float32)
@ -200,7 +200,7 @@ class Dense(Cell):
[[ 2.5246444 2.2738023 0.5711005 -3.9399147 ] [[ 2.5246444 2.2738023 0.5711005 -3.9399147 ]
[ 1.0739875 4.0155234 0.94188046 -5.459526 ]] [ 1.0739875 4.0155234 0.94188046 -5.459526 ]]
""" """
@cell_attr_register(attrs=['has_bias', 'activation']) @cell_attr_register(attrs=['has_bias', 'activation', 'in_channels', 'out_channels'])
def __init__(self, def __init__(self,
in_channels, in_channels,
out_channels, out_channels,

@ -31,6 +31,18 @@ class Net(nn.Cell):
def construct(self, x): def construct(self, x):
return self.dense(x) return self.dense(x)
class MultiLayerDense(nn.Cell):
def __init__(self):
super(MultiLayerDense, self).__init__()
self.dense1 = nn.Dense(in_channels=256, out_channels=512)
self.dense1 = nn.Dense(in_channels=512, out_channels=1024)
@ms_function
def construct(self, x):
x = self.dense1(x)
x = self.dense2(x)
return x
def test_net(): def test_net():
x = np.random.randn(32, 2048).astype(np.float32) x = np.random.randn(32, 2048).astype(np.float32)
@ -46,3 +58,11 @@ def test_net_ND():
output = net(Tensor(x)) output = net(Tensor(x))
print(x) print(x)
print(output.asnumpy()) print(output.asnumpy())
def test_net_multilayer():
x = np.random.randn(16, 32, 256).astype(np.float32)
net = MultiLayerDense()
output = net(Tensor(x))
print(x)
print(output.asnumpy())

@ -0,0 +1,65 @@
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
context.set_context(device_target="GPU")
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.dense = nn.Dense(2048, 1001)
def construct(self, x):
return self.dense(x)
class MultiLayerDense(nn.Cell):
def __init__(self):
super(MultiLayerDense, self).__init__()
self.dense1 = nn.Dense(in_channels=256, out_channels=512)
self.dense1 = nn.Dense(in_channels=512, out_channels=1024)
def construct(self, x):
x = self.dense1(x)
x = self.dense2(x)
return x
def test_net():
x = np.random.randn(32, 2048).astype(np.float32)
net = Net()
output = net(Tensor(x))
print(x)
print(output.asnumpy())
def test_net_ND():
x = np.random.randn(2, 332, 2048).astype(np.float32)
net = Net()
output = net(Tensor(x))
print(x)
print(output.asnumpy())
def test_net_multilayer():
x = np.random.randn(16, 32, 256).astype(np.float32)
net = MultiLayerDense()
output = net(Tensor(x))
print(x)
print(output.asnumpy())
Loading…
Cancel
Save