pylint waring clean

pull/1042/head
jinyaohui 5 years ago
parent a2d5ad5abe
commit 26fd75895d

@ -18,13 +18,13 @@
# pylint: disable=missing-docstring, arguments-differ, W0612
import os
import mindspore.common.dtype as mstype
import mindspore.context as context
from mindspore import Tensor
from mindspore.nn.optim import AdamWeightDecayDynamicLR
from mindspore.model_zoo.Bert_NEZHA import BertConfig, BertNetworkWithLoss, BertTrainOneStepCell, \
BertTrainOneStepWithLossScaleCell
from mindspore.nn.wrap.loss_scale import FixedLossScaleUpdateCell
from mindspore.nn.optim import AdamWeightDecayDynamicLR
from mindspore.train.loss_scale_manager import DynamicLossScaleManager
from ...dataset_mock import MindData
from ...ops_common import nn, np, batch_tuple_tensor, build_construct_graph

@ -13,7 +13,6 @@
# limitations under the License.
# ============================================================================
"""use ImageNetToMR tool generate mindrecord"""
import os
from mindspore.mindrecord import ImageNetToMR
IMAGENET_MAP_FILE = "../../../ut/data/mindrecord/testImageNetDataWhole/labels_map.txt"
@ -21,6 +20,7 @@ IMAGENET_IMAGE_DIR = "../../../ut/data/mindrecord/testImageNetDataWhole/images"
MINDRECORD_FILE = "./imagenet.mindrecord"
PARTITION_NUMBER = 16
def imagenet_to_mindrecord():
imagenet_transformer = ImageNetToMR(IMAGENET_MAP_FILE,
IMAGENET_IMAGE_DIR,
@ -28,5 +28,6 @@ def imagenet_to_mindrecord():
PARTITION_NUMBER)
imagenet_transformer.transform()
if __name__ == '__main__':
imagenet_to_mindrecord()

@ -15,6 +15,7 @@
"""generate tfrecord"""
import collections
import os
import tensorflow as tf
IMAGENET_MAP_FILE = "../../../ut/data/mindrecord/testImageNetDataWhole/labels_map.txt"
@ -22,6 +23,7 @@ IMAGENET_IMAGE_DIR = "../../../ut/data/mindrecord/testImageNetDataWhole/images"
TFRECORD_FILE = "./imagenet.tfrecord"
PARTITION_NUMBER = 16
def get_imagenet_filename_label_pic(map_file, image_dir):
"""
Get data from imagenet.
@ -69,18 +71,22 @@ def get_imagenet_filename_label_pic(map_file, image_dir):
continue
yield str(file_name), int(label), image_bytes
def create_int_feature(values):
feature = tf.train.Feature(int64_list=tf.train.Int64List(value=[values]))
return feature
def create_string_feature(values):
feature = tf.train.Feature(bytes_list=tf.train.BytesList(value=[bytes(values, encoding='utf-8')]))
return feature
def create_bytes_feature(values):
feature = tf.train.Feature(bytes_list=tf.train.BytesList(value=[values]))
return feature
def imagenet_to_tfrecord():
writers = []
for i in range(PARTITION_NUMBER):
@ -109,5 +115,6 @@ def imagenet_to_tfrecord():
print("Write {} total examples".format(total_written))
if __name__ == '__main__':
imagenet_to_tfrecord()

@ -14,17 +14,20 @@
# ============================================================================
"""test dataset performance about mindspore.MindDataset, mindspore.TFRecordDataset, tf.data.TFRecordDataset"""
import time
import mindspore.dataset as ds
from mindspore.mindrecord import FileReader
import tensorflow as tf
import mindspore.dataset as ds
from mindspore.mindrecord import FileReader
print_step = 5000
def print_log(count):
if count % print_step == 0:
print("Read {} rows ...".format(count))
def use_filereader(mindrecord):
start = time.time()
columns_list = ["data", "label"]
@ -38,6 +41,7 @@ def use_filereader(mindrecord):
end = time.time()
print("Read by FileReader - total rows: {}, cost time: {}s".format(num_iter, end - start))
def use_minddataset(mindrecord):
start = time.time()
columns_list = ["data", "label"]
@ -51,6 +55,7 @@ def use_minddataset(mindrecord):
end = time.time()
print("Read by MindDataset - total rows: {}, cost time: {}s".format(num_iter, end - start))
def use_tfrecorddataset(tfrecord):
start = time.time()
columns_list = ["data", "label"]
@ -66,8 +71,10 @@ def use_tfrecorddataset(tfrecord):
end = time.time()
print("Read by TFRecordDataset - total rows: {}, cost time: {}s".format(num_iter, end - start))
def use_tensorflow_tfrecorddataset(tfrecord):
start = time.time()
def _parse_record(example_photo):
features = {
'file_name': tf.io.FixedLenFeature([], tf.string),
@ -87,6 +94,7 @@ def use_tensorflow_tfrecorddataset(tfrecord):
end = time.time()
print("Read by TensorFlow TFRecordDataset - total rows: {}, cost time: {}s".format(num_iter, end - start))
if __name__ == '__main__':
# use MindDataset
mindrecord = './imagenet.mindrecord00'

@ -18,15 +18,14 @@
import numpy as np
import mindspore.nn as nn
from mindspore.common.api import _executor
import mindspore.ops.composite as C
from mindspore import Tensor
from mindspore.model_zoo.lenet import LeNet
from mindspore import context
import mindspore.ops.composite as C
from mindspore.common.api import _executor
from mindspore.model_zoo.lenet import LeNet
context.set_context(mode=context.GRAPH_MODE)
batch_size = 1
channel = 1
height = 32
@ -36,6 +35,7 @@ num_class = 10
class LeNetGrad(nn.Cell):
"""Backward of LeNet"""
def __init__(self, network):
super(LeNetGrad, self).__init__()
self.grad_op = C.grad_all_with_sens

@ -17,10 +17,11 @@
import numpy as np
from mindspore.common.api import _executor
from mindspore import Tensor
from mindspore.common.api import _executor
from .resnet_example import resnet50
def test_compile():
net = resnet50()
inp = Tensor(np.ones([1, 3, 224, 224]).astype(np.float32))

@ -20,9 +20,9 @@
import numpy as np
from mindspore import Tensor
from ..train_step_wrap import train_step_without_opt
from .resnet_example import resnet50
from ..vm_impl import *
from ..train_step_wrap import train_step_without_opt
def test_resnet50_pynative():
net = train_step_without_opt(resnet50())

@ -17,13 +17,15 @@
import numpy as np
from mindspore.common.api import _executor
import mindspore.context as context
from mindspore import Tensor
from ..train_step_wrap import train_step_with_loss_warp
from mindspore.common.api import _executor
from .resnet_example import resnet50
from ..train_step_wrap import train_step_with_loss_warp
context.set_context(mode=context.GRAPH_MODE)
def test_train_step():
net = train_step_with_loss_warp(resnet50())
net.set_train()

@ -16,15 +16,15 @@
train step wrap
"""
import mindspore.nn as nn
from mindspore.ops import functional as F
from mindspore import ParameterTuple
from mindspore.ops import composite as C
from mindspore.ops import operations as P
from mindspore import Parameter, ParameterTuple
class TrainStepWrap(nn.Cell):
"""
TrainStepWrap definition
"""
def __init__(self, network):
super(TrainStepWrap, self).__init__()
self.network = network
@ -39,10 +39,12 @@ class TrainStepWrap(nn.Cell):
grads = self.grad(self.network, weights)(x, label)
return self.optimizer(grads)
class NetWithLossClass(nn.Cell):
"""
NetWithLossClass definition
"""
def __init__(self, network):
super(NetWithLossClass, self).__init__(auto_prefix=False)
self.loss = nn.SoftmaxCrossEntropyWithLogits()
@ -61,6 +63,7 @@ class TrainStepWrap2(nn.Cell):
"""
TrainStepWrap2 definition
"""
def __init__(self, network, sens):
super(TrainStepWrap2, self).__init__()
self.network = network
@ -76,13 +79,16 @@ class TrainStepWrap2(nn.Cell):
grads = self.grad(self.network, weights)(x, self.sens)
return self.optimizer(grads)
def train_step_with_sens(network, sens):
return TrainStepWrap2(network, sens)
class TrainStepWrapWithoutOpt(nn.Cell):
"""
TrainStepWrapWithoutOpt definition
"""
def __init__(self, network):
super(TrainStepWrapWithoutOpt, self).__init__()
self.network = network
@ -93,5 +99,6 @@ class TrainStepWrapWithoutOpt(nn.Cell):
grads = self.grad(self.network, self.weights)(x, label)
return grads
def train_step_without_opt(network):
return TrainStepWrapWithoutOpt(NetWithLossClass(network))

@ -28,6 +28,7 @@ context.set_context(mode=context.GRAPH_MODE)
def Xtest_arg_dict():
class DictNet(Cell):
"""DictNet definition"""
def __init__(self):
super(DictNet, self).__init__()
self.max = P.Maximum()
@ -48,6 +49,7 @@ def Xtest_arg_dict():
def test_const_dict():
class DictNet(Cell):
"""DictNet1 definition"""
def __init__(self):
super(DictNet, self).__init__()
self.max = P.Maximum()
@ -58,6 +60,7 @@ def test_const_dict():
a = self.max(self.dictionary["x"], self.dictionary["y"])
b = self.min(self.dictionary["x"], self.dictionary["y"])
return a + b
net = DictNet()
net()
@ -65,6 +68,7 @@ def test_const_dict():
def test_dict_set_or_get_item():
class DictNet(Cell):
"""DictNet1 definition"""
def __init__(self):
super(DictNet, self).__init__()
self.dict_ = {"x": 1, "y": 2}
@ -91,6 +95,7 @@ def test_dict_set_or_get_item():
def test_dict_set_or_get_item_2():
class DictNet(Cell):
"""DictNet1 definition"""
def __init__(self):
super(DictNet, self).__init__()
@ -117,6 +122,7 @@ def test_dict_set_or_get_item_2():
def test_dict_set_or_get_item_3():
class DictNet(Cell):
"""DictNet1 definition"""
def __init__(self):
super(DictNet, self).__init__()
self.dict_ = {"x": Tensor(np.ones([2, 2, 3], np.float32)), "y": 1}
@ -130,5 +136,3 @@ def test_dict_set_or_get_item_3():
net = DictNet()
assert net() == Tensor(np.ones([4, 2, 3], np.float32))

@ -13,7 +13,6 @@
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
from mindspore import Tensor, context
from mindspore.nn import Cell

@ -15,6 +15,7 @@
"""setup for pytest"""
import mindspore.context as context
# pylint: disable=unused-argument
def setup_module(module):
context.set_context(mode=context.GRAPH_MODE)

@ -16,6 +16,7 @@
resnet50 example
"""
import numpy as np
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P

@ -16,19 +16,21 @@
test assign add
"""
import numpy as np
import mindspore as ms
import mindspore.context as context
import mindspore.nn as nn
from mindspore.ops import operations as P
from mindspore.common.initializer import initializer
from mindspore import Tensor, Parameter
import mindspore as ms
from mindspore.common.initializer import initializer
from mindspore.ops import operations as P
from ..ut_filter import non_graph_engine
from mindspore.common.api import _executor
import mindspore.context as context
import pytest
context.set_context(mode=context.GRAPH_MODE)
class Net(nn.Cell):
"""Net definition"""
def __init__(self):
super(Net, self).__init__()
self.AssignAdd = P.AssignAdd()
@ -39,18 +41,19 @@ class Net(nn.Cell):
out = self.AssignAdd(self.inputdata, x)
return out
@non_graph_engine
def test_AssignAdd_1():
"""test AssignAdd 1"""
import mindspore.context as context
context.set_context(mode=context.GRAPH_MODE)
net = Net()
x = Tensor(np.ones([1]).astype(np.int64)*100)
x = Tensor(np.ones([1]).astype(np.int64) * 100)
print("MyPrintResult dataX:", x)
result = net(x)
print("MyPrintResult data::", result)
expect = np.ones([1]).astype(np.int64)*101
expect = np.ones([1]).astype(np.int64) * 101
diff = result.asnumpy() - expect
print("MyPrintExpect:", expect)
@ -58,18 +61,19 @@ def test_AssignAdd_1():
error = np.ones(shape=[1]) * 1.0e-3
assert np.all(diff < error)
@non_graph_engine
def test_AssignAdd_2():
"""test AssignAdd 2"""
import mindspore.context as context
context.set_context(mode=context.GRAPH_MODE)
net = Net()
x = Tensor(np.ones([1]).astype(np.int64)*102)
x = Tensor(np.ones([1]).astype(np.int64) * 102)
print("MyPrintResult dataX:", x)
result = net(x)
print("MyPrintResult data::", result.asnumpy())
expect = np.ones([1]).astype(np.int64)*103
expect = np.ones([1]).astype(np.int64) * 103
diff = result.asnumpy() - expect
print("MyPrintExpect:", expect)
@ -77,8 +81,10 @@ def test_AssignAdd_2():
error = np.ones(shape=[1]) * 1.0e-3
assert np.all(diff < error)
class AssignAddNet(nn.Cell):
"""Net definition"""
def __init__(self):
super(AssignAddNet, self).__init__()
self.AssignAdd = P.AssignAdd()
@ -89,9 +95,10 @@ class AssignAddNet(nn.Cell):
z1 = self.AssignAdd(self.inputdata, self.one)
return z1
@non_graph_engine
def test_assignadd_scalar_cast():
net = AssignAddNet()
x = Tensor(np.ones([1]).astype(np.int64)*102)
#_executor.compile(net, 1)
x = Tensor(np.ones([1]).astype(np.int64) * 102)
# _executor.compile(net, 1)
result = net(x)

@ -14,6 +14,7 @@
# ============================================================================
""" test Activations """
import numpy as np
import mindspore.nn as nn
from mindspore import Tensor
from ..ut_filter import non_graph_engine

@ -16,15 +16,17 @@
test assign sub
"""
import numpy as np
import mindspore.context as context
import mindspore.nn as nn
import mindspore.ops.operations as P
from mindspore import Tensor
import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
context.set_context(mode=context.GRAPH_MODE)
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()

@ -14,6 +14,7 @@
# ============================================================================
"""ut for batchnorm layer"""
import numpy as np
import mindspore.nn as nn
from mindspore import Tensor
from ..ut_filter import non_graph_engine

@ -14,14 +14,17 @@
# ============================================================================
""" test BiasAdd """
import numpy as np
import mindspore.nn as nn
from mindspore.ops import operations as P
from mindspore.common.initializer import initializer
from mindspore import Tensor, Parameter
from mindspore.common.initializer import initializer
from mindspore.ops import operations as P
from ..ut_filter import non_graph_engine
class Net(nn.Cell):
"""Net definition"""
def __init__(self,
output_channels,
bias_init='zeros',

@ -14,6 +14,7 @@
# ============================================================================
"""test conv"""
import numpy as np
import mindspore.nn as nn
from mindspore import Tensor
from ..ut_filter import non_graph_engine
@ -25,6 +26,7 @@ out_channels = 64
class Net(nn.Cell):
"""Net definition"""
def __init__(self,
cin,
cout,
@ -70,6 +72,7 @@ def test_compile2():
output = net(input_data)
print(output.asnumpy())
@non_graph_engine
def test_compile3():
net = Net(3, 1, (3, 3), weight_init='ONES')

@ -14,12 +14,15 @@
# ============================================================================
""" test Dense """
import numpy as np
import mindspore.nn as nn
from mindspore import Tensor
from ..ut_filter import non_graph_engine
class Net(nn.Cell):
"""Net definition"""
def __init__(self,
input_channels,
output_channels,

@ -14,11 +14,12 @@
# ============================================================================
"""test eval"""
import numpy as np
import mindspore as ms
import mindspore.nn as nn
from mindspore.common.api import _executor
from mindspore import Tensor
from mindspore import context
from mindspore.common.api import _executor
from ..ut_filter import non_graph_engine

@ -16,8 +16,8 @@
import numpy as np
import mindspore.nn as nn
from mindspore.ops import operations as P
from mindspore import Tensor
from mindspore.ops import operations as P
from ..ut_filter import non_graph_engine

@ -15,12 +15,12 @@
"""
test pooling api
"""
import numpy as np
import mindspore.nn as nn
from mindspore import Tensor
class MaxNet(nn.Cell):
"""MaxNet definition"""
def __init__(self,
kernel_size,
stride=None):

@ -16,9 +16,11 @@
test softmax api
"""
import numpy as np
import mindspore.nn as nn
from mindspore import Tensor
class Net(nn.Cell):
def __init__(self, dim):
super(Net, self).__init__()

@ -14,10 +14,12 @@
# ============================================================================
""" test TensorAdd """
import numpy as np
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save