pull/9083/head
parent
e211e11b48
commit
29cd33a542
@ -0,0 +1,102 @@
|
|||||||
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""Dice"""
|
||||||
|
import numpy as np
|
||||||
|
from mindspore._checkparam import Validator as validator
|
||||||
|
from .metric import Metric
|
||||||
|
|
||||||
|
|
||||||
|
class Dice(Metric):
|
||||||
|
r"""
|
||||||
|
The Dice coefficient is a set similarity metric. It is used to calculate the similarity between two samples. The
|
||||||
|
value of the Dice coefficient is 1 when the segmentation result is the best and 0 when the segmentation result
|
||||||
|
is the worst. The Dice coefficient indicates the ratio of the area between two objects to the total area.
|
||||||
|
The function is shown as follows:
|
||||||
|
|
||||||
|
.. math::
|
||||||
|
\text{dice} = \frac{2 * (\text{pred} \bigcap \text{true})}{\text{pred} \bigcup \text{true}}
|
||||||
|
|
||||||
|
Args:
|
||||||
|
smooth (float): A term added to the denominator to improve numerical stability. Should be greater than 0.
|
||||||
|
Default: 1e-5.
|
||||||
|
threshold (float): A threshold, which is used to compare with the input tensor. Default: 0.5.
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
>>> x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
|
||||||
|
>>> y = Tensor(np.array([[0, 1], [1, 0], [0, 1]]))
|
||||||
|
>>> metric = Dice(smooth=1e-5, threshold=0.5)
|
||||||
|
>>> metric.clear()
|
||||||
|
>>> metric.update(x, y)
|
||||||
|
>>> dice = metric.eval()
|
||||||
|
0.22222926
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, smooth=1e-5, threshold=0.5):
|
||||||
|
super(Dice, self).__init__()
|
||||||
|
|
||||||
|
self.smooth = validator.check_positive_float(smooth, "smooth")
|
||||||
|
self.threshold = validator.check_value_type("threshold", threshold, [float])
|
||||||
|
self.clear()
|
||||||
|
|
||||||
|
def clear(self):
|
||||||
|
"""Clears the internal evaluation result."""
|
||||||
|
self._dim = 0
|
||||||
|
self.intersection = 0
|
||||||
|
self.unionset = 0
|
||||||
|
|
||||||
|
def update(self, *inputs):
|
||||||
|
"""
|
||||||
|
Updates the internal evaluation result :math:`y_{pred}` and :math:`y`.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
inputs: Input `y_pred` and `y`. `y_pred` and `y` are Tensor, list or numpy.ndarray. `y_pred` is the
|
||||||
|
predicted value, `y` is the true value. The shape of `y_pred` and `y` are both :math:`(N, C)`.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: If the number of the inputs is not 2.
|
||||||
|
"""
|
||||||
|
if len(inputs) != 2:
|
||||||
|
raise ValueError('Dice need 2 inputs (y_pred, y), but got {}'.format(len(inputs)))
|
||||||
|
|
||||||
|
y_pred = self._convert_data(inputs[0])
|
||||||
|
y = self._convert_data(inputs[1])
|
||||||
|
|
||||||
|
if y_pred.shape != y.shape:
|
||||||
|
raise RuntimeError('y_pred and y should have same the dimension, but the shape of y_pred is{}, '
|
||||||
|
'the shape of y is {}.'.format(y_pred.shape, y.shape))
|
||||||
|
|
||||||
|
y_pred = (y_pred > self.threshold).astype(int)
|
||||||
|
self._dim = y.shape
|
||||||
|
pred_flat = np.reshape(y_pred, (self._dim[0], -1))
|
||||||
|
true_flat = np.reshape(y, (self._dim[0], -1))
|
||||||
|
self.intersection = np.sum((pred_flat * true_flat), axis=1)
|
||||||
|
self.unionset = np.sum(pred_flat, axis=1) + np.sum(true_flat, axis=1)
|
||||||
|
|
||||||
|
def eval(self):
|
||||||
|
r"""
|
||||||
|
Computes the Dice.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Float, the computed result.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
RuntimeError: If the sample size is 0.
|
||||||
|
"""
|
||||||
|
if self._dim[0] == 0:
|
||||||
|
raise RuntimeError('Dice can not be calculated, because the number of samples is 0.')
|
||||||
|
|
||||||
|
dice = (2 * self.intersection + self.smooth) / (self.unionset + self.smooth)
|
||||||
|
|
||||||
|
return np.sum(dice) / self._dim[0]
|
@ -0,0 +1,49 @@
|
|||||||
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
# """test_dice"""
|
||||||
|
import math
|
||||||
|
import numpy as np
|
||||||
|
import pytest
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.nn.metrics import get_metric_fn, Dice
|
||||||
|
|
||||||
|
|
||||||
|
def test_classification_dice():
|
||||||
|
"""test_dice"""
|
||||||
|
x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
|
||||||
|
y = Tensor(np.array([[0, 1], [1, 0], [0, 1]]))
|
||||||
|
metric = get_metric_fn('dice')
|
||||||
|
metric.clear()
|
||||||
|
metric.update(x, y)
|
||||||
|
dice = metric.eval()
|
||||||
|
|
||||||
|
assert math.isclose(dice, 0.22222926, abs_tol=0.001)
|
||||||
|
|
||||||
|
|
||||||
|
def test_dice_update1():
|
||||||
|
x = Tensor(np.array([[0.2, 0.5, 0.7], [0.3, 0.1, 0.2], [0.9, 0.6, 0.5]]))
|
||||||
|
metric = Dice(1e-5, 0.5)
|
||||||
|
metric.clear()
|
||||||
|
|
||||||
|
with pytest.raises(ValueError):
|
||||||
|
metric.update(x)
|
||||||
|
|
||||||
|
|
||||||
|
def test_dice_runtime():
|
||||||
|
metric = Dice(1e-5, 0.8)
|
||||||
|
metric.clear()
|
||||||
|
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
metric.eval()
|
Loading…
Reference in new issue