pull/1637/head
unknown 6 years ago
parent 91adbf7e2c
commit 2d433e6408

@ -1,4 +1,3 @@
#!/bin/bash
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
@ -14,18 +13,10 @@
# limitations under the License.
# ============================================================================
"""evaluation."""
import os, time
import argparse
from mindspore import context
from mindspore import log as logger
from mindspore.communication.management import init
import mindspore.nn as nn
from mindspore.nn.optim.momentum import Momentum
from mindspore.train.loss_scale_manager import FixedLossScaleManager
from mindspore import Model, ParallelMode
import argparse
from mindspore import Model
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.train.callback import Callback,CheckpointConfig, ModelCheckpoint, TimeMonitor
from src.md_dataset import create_dataset
from src.losses import OhemLoss
from src.miou_precision import MiouPrecision
@ -56,3 +47,4 @@ if __name__ == "__main__":
loss = OhemLoss(config.seg_num_classes, config.ignore_label)
model = Model(net, loss, metrics=metrics)
model.eval(eval_dataset)

@ -1,4 +1,3 @@
#!/bin/bash
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
@ -14,16 +13,11 @@
# limitations under the License.
# ============================================================================
"""train."""
import os, time
import argparse
from mindspore import context
from mindspore import log as logger
from mindspore.communication.management import init
import mindspore.nn as nn
from mindspore.nn.optim.momentum import Momentum
from mindspore.train.loss_scale_manager import FixedLossScaleManager
from mindspore import Model, ParallelMode
import argparse
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.train.callback import Callback, CheckpointConfig, ModelCheckpoint, TimeMonitor
from src.md_dataset import create_dataset
@ -40,8 +34,7 @@ parser.add_argument("--device_id", type=int, default=0, help="Device id, default
parser.add_argument('--checkpoint_url', default=None, help='Checkpoint path')
parser.add_argument("--enable_save_ckpt", type=str, default="true", help="Enable save checkpoint, default is true.")
parser.add_argument('--max_checkpoint_num', type=int, default=5, help='Max checkpoint number.')
parser.add_argument("--save_checkpoint_steps", type=int, default=1000, help="Save checkpoint steps, "
"default is 1000.")
parser.add_argument("--save_checkpoint_steps", type=int, default=1000, help="Save checkpoint steps, default is 1000.")
parser.add_argument("--save_checkpoint_num", type=int, default=1, help="Save checkpoint numbers, default is 1.")
args_opt = parser.parse_args()
print(args_opt)
@ -63,13 +56,13 @@ class LossCallBack(Callback):
cb_params = run_context.original_args()
print("epoch: {}, step: {}, outputs are {}".format(cb_params.cur_epoch_num, cb_params.cur_step_num,
str(cb_params.net_outputs)))
def model_fine_tune(flags, net, fix_weight_layer):
def model_fine_tune(flags, train_net, fix_weight_layer):
checkpoint_path = flags.checkpoint_url
if checkpoint_path is None:
return
param_dict = load_checkpoint(checkpoint_path)
load_param_into_net(net, param_dict)
for para in net.trainable_params():
load_param_into_net(train_net, param_dict)
for para in train_net.trainable_params():
if fix_weight_layer in para.name:
para.requires_grad = False
if __name__ == "__main__":
@ -97,3 +90,4 @@ if __name__ == "__main__":
opt = Momentum(filter(lambda x: 'beta' not in x.name and 'gamma' not in x.name and 'depth' not in x.name and 'bias' not in x.name, net.trainable_params()), learning_rate=config.learning_rate, momentum=config.momentum, weight_decay=config.weight_decay)
model = Model(net, loss, opt)
model.train(args_opt.epoch_size, train_dataset, callback)
Loading…
Cancel
Save