|
|
@ -21,34 +21,10 @@ from mindspore import Tensor
|
|
|
|
from mindspore.nn import TrainOneStepCell, WithLossCell
|
|
|
|
from mindspore.nn import TrainOneStepCell, WithLossCell
|
|
|
|
from mindspore.nn.optim import Momentum
|
|
|
|
from mindspore.nn.optim import Momentum
|
|
|
|
from mindspore.ops import operations as P
|
|
|
|
from mindspore.ops import operations as P
|
|
|
|
from mindspore.common.initializer import initializer
|
|
|
|
|
|
|
|
from mindspore.common.parameter import Parameter
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class DenseDevice(nn.Cell):
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
|
|
|
|
in_channels,
|
|
|
|
|
|
|
|
out_channels,
|
|
|
|
|
|
|
|
device_target='Ascend',
|
|
|
|
|
|
|
|
weight_init='normal',
|
|
|
|
|
|
|
|
bias_init='zeros'):
|
|
|
|
|
|
|
|
super(DenseDevice, self).__init__()
|
|
|
|
|
|
|
|
self.device_target = device_target
|
|
|
|
|
|
|
|
self.weight = Parameter(initializer(weight_init, [out_channels, in_channels]), name="weight")
|
|
|
|
|
|
|
|
self.bias = Parameter(initializer(bias_init, [out_channels]), name="bias")
|
|
|
|
|
|
|
|
self.bias_add = P.BiasAdd()
|
|
|
|
|
|
|
|
self.matmul = P.MatMul(transpose_b=True)
|
|
|
|
|
|
|
|
self.matmul.add_prim_attr("primitive_target", self.device_target)
|
|
|
|
|
|
|
|
self.bias_add.add_prim_attr("primitive_target", self.device_target)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def construct(self, x):
|
|
|
|
|
|
|
|
x = self.matmul(x, self.weight)
|
|
|
|
|
|
|
|
x = self.bias_add(x, self.bias)
|
|
|
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class LeNet(nn.Cell):
|
|
|
|
class LeNet(nn.Cell):
|
|
|
|
def __init__(self):
|
|
|
|
def __init__(self):
|
|
|
|
super(LeNet, self).__init__()
|
|
|
|
super(LeNet, self).__init__()
|
|
|
@ -59,9 +35,15 @@ class LeNet(nn.Cell):
|
|
|
|
self.conv2 = nn.Conv2d(6, 16, kernel_size=5, stride=1, padding=0, has_bias=False, pad_mode='valid')
|
|
|
|
self.conv2 = nn.Conv2d(6, 16, kernel_size=5, stride=1, padding=0, has_bias=False, pad_mode='valid')
|
|
|
|
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
|
|
|
|
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
|
|
|
|
self.reshape = P.Reshape()
|
|
|
|
self.reshape = P.Reshape()
|
|
|
|
self.fc1 = DenseDevice(400, 120, device_target='CPU')
|
|
|
|
self.fc1 = nn.Dense(400, 120)
|
|
|
|
self.fc2 = DenseDevice(120, 84, device_target='CPU')
|
|
|
|
self.fc1.matmul.add_prim_attr("primitive_target", "CPU")
|
|
|
|
self.fc3 = DenseDevice(84, 10, device_target='CPU')
|
|
|
|
self.fc1.bias_add.add_prim_attr("primitive_target", "CPU")
|
|
|
|
|
|
|
|
self.fc2 = nn.Dense(120, 84)
|
|
|
|
|
|
|
|
self.fc2.matmul.add_prim_attr("primitive_target", "CPU")
|
|
|
|
|
|
|
|
self.fc2.bias_add.add_prim_attr("primitive_target", "CPU")
|
|
|
|
|
|
|
|
self.fc3 = nn.Dense(84, 10)
|
|
|
|
|
|
|
|
self.fc3.matmul.add_prim_attr("primitive_target", "CPU")
|
|
|
|
|
|
|
|
self.fc3.bias_add.add_prim_attr("primitive_target", "CPU")
|
|
|
|
|
|
|
|
|
|
|
|
def construct(self, input_x):
|
|
|
|
def construct(self, input_x):
|
|
|
|
output = self.conv1(input_x)
|
|
|
|
output = self.conv1(input_x)
|
|
|
|