|
|
|
@ -33,6 +33,8 @@ EVENT_FILE_NAME_MARK = ".out.events.summary."
|
|
|
|
|
EVENT_FILE_INIT_VERSION_MARK = "Mindspore.Event:"
|
|
|
|
|
EVENT_FILE_INIT_VERSION = 1
|
|
|
|
|
|
|
|
|
|
F32_MIN, F32_MAX = np.finfo(np.float32).min, np.finfo(np.float32).max
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_event_file_name(prefix, suffix):
|
|
|
|
|
"""
|
|
|
|
@ -287,12 +289,22 @@ def _fill_histogram_summary(tag: str, np_value: np.ndarray, summary) -> None:
|
|
|
|
|
if issubclass(np_value.dtype.type, np.floating):
|
|
|
|
|
summary.min = ma_value.min(fill_value=np.PINF)
|
|
|
|
|
summary.max = ma_value.max(fill_value=np.NINF)
|
|
|
|
|
if summary.min < F32_MIN or summary.max > F32_MAX:
|
|
|
|
|
logger.warning(
|
|
|
|
|
'Values(%r, %r) are too large, '
|
|
|
|
|
'you may encounter some undefined behaviours hereafter.', summary.min, summary.max)
|
|
|
|
|
else:
|
|
|
|
|
summary.min = ma_value.min()
|
|
|
|
|
summary.max = ma_value.max()
|
|
|
|
|
summary.sum = ma_value.sum(dtype=np.float64)
|
|
|
|
|
bins = _calc_histogram_bins(valid)
|
|
|
|
|
bins = np.linspace(summary.min, summary.max, bins + 1, dtype=np_value.dtype)
|
|
|
|
|
first_edge, last_edge = summary.min, summary.max
|
|
|
|
|
|
|
|
|
|
if not first_edge < last_edge:
|
|
|
|
|
first_edge -= 0.5
|
|
|
|
|
last_edge += 0.5
|
|
|
|
|
|
|
|
|
|
bins = np.linspace(first_edge, last_edge, bins + 1, dtype=np_value.dtype)
|
|
|
|
|
hists, edges = np.histogram(np_value, bins=bins)
|
|
|
|
|
|
|
|
|
|
for hist, edge1, edge2 in zip(hists, edges, edges[1:]):
|
|
|
|
|