parent
9593e82e56
commit
374e9e199d
@ -0,0 +1,75 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""math Operations."""
|
||||
from mindspore.ops.composite.multitype_ops import _constexpr_utils as const_utils
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore._checkparam import Validator as validator
|
||||
from mindspore.ops.primitive import constexpr
|
||||
from mindspore.ops import functional as F
|
||||
from .. import operations as P
|
||||
|
||||
|
||||
@constexpr
|
||||
def _check_validate_axis(axis, name):
|
||||
if isinstance(axis, (tuple, list)):
|
||||
for idx, item in enumerate(axis):
|
||||
validator.check_value_type("axis[%d]" % idx, item, [int], name)
|
||||
axis = validator.check_value_type('axis', axis, [int, tuple, list], name)
|
||||
return axis
|
||||
|
||||
|
||||
@constexpr
|
||||
def _check_validate_keepdims(keep_dims, name):
|
||||
keep_dims = validator.check_value_type('keep_dims', keep_dims, [bool], name)
|
||||
return keep_dims
|
||||
|
||||
|
||||
def count_nonzero(x, axis=(), keep_dims=False, dtype=mstype.int32):
|
||||
"""
|
||||
Count number of nonzero elements across axis of input tensor
|
||||
|
||||
Args:
|
||||
- **x** (Tensor[Number]) - Input data is used to count non-zero numbers.
|
||||
- **axis** (Union[int, tuple(int), list(int)]) - The dimensions to reduce. Only constant value is allowed.
|
||||
Default: (), reduce all dimensions.
|
||||
|
||||
- **keep_dims** (bool) - If true, keep these reduced dimensions and the length is 1.
|
||||
If false, don't keep these dimensions. Default: False.
|
||||
- **dtype** (Union[Number, mstype.bool_]) - The data type of the output tensor. Only constant value is allowed.
|
||||
Default: mstype.int32
|
||||
|
||||
Returns:
|
||||
Tensor, number of nonzero element. The data type is dtype.
|
||||
|
||||
Examples:
|
||||
>>> input_tensor = Tensor(np.array([[0, 1, 0], [1, 1, 0]]).astype(np.float32))
|
||||
>>> nonzero_num = count_nonzero(x=input_x, axis=[0, 1], keep_dims=True, dtype=mstype.int32)
|
||||
nonzero_num: [[3]]
|
||||
"""
|
||||
|
||||
const_utils.check_valid_type(F.dtype(x), mstype.number_type, 'input x')
|
||||
axis = _check_validate_axis(axis, "count_nonzero")
|
||||
keep_dims = _check_validate_keepdims(keep_dims, "count_nonzero")
|
||||
const_utils.check_valid_type(dtype, mstype.number_type + (mstype.bool_,), 'dtype')
|
||||
|
||||
not_equal = P.NotEqual()
|
||||
cast = P.Cast()
|
||||
reduce_sum = P.ReduceSum(keep_dims)
|
||||
nonzero_bool = not_equal(x, 0)
|
||||
# ReduceSum only support float16 or float32 tensor.
|
||||
nonzero_val = cast(nonzero_bool, mstype.float16)
|
||||
nonzero_num = cast(reduce_sum(nonzero_val, axis), dtype)
|
||||
|
||||
return nonzero_num
|
Loading…
Reference in new issue