Modify ssd_ghostnet network.

pull/10396/head
zhanghuiyao 4 years ago
parent e06048bfe0
commit 3891f802b6

@ -195,7 +195,7 @@ For more configuration details, please refer the script `config.py`.
```python
# grep "AP" eval.log
{'AP': 0.39830956300341397, 'Ap .5': 0.6658941566481336, 'AP .75': 0.396047897339743, 'AP (M)': 0.3075356543635785, 'AP (L)': 0.533772768618845, 'AR': 0.4519836272040302, 'AR .5': 0.693639798488665, 'AR .75': 0.4570214105793451, 'AR (M)': 0.32155148866429945, 'AR (L)': 0.6330360460795242}
{'AP': 0.40250956300341397, 'Ap .5': 0.6658941566481336, 'AP .75': 0.396047897339743, 'AP (M)': 0.3075356543635785, 'AP (L)': 0.533772768618845, 'AR': 0.4519836272040302, 'AR .5': 0.693639798488665, 'AR .75': 0.4570214105793451, 'AR (M)': 0.32155148866429945, 'AR (L)': 0.6330360460795242}
```

@ -9,6 +9,7 @@ SSD discretizes the output space of bounding boxes into a set of default boxes o
The SSD approach is based on a feed-forward convolutional network that produces a fixed-size collection of bounding boxes and scores for the presence of object class instances in those boxes, followed by a non-maximum suppression step to produce the final detections. The early network layers are based on a standard architecture used for high quality image classification, which is called the base network. Then add auxiliary structure to the network to produce detections.
# [Dataset](#contents)
Dataset used: [COCO2017](<http://images.cocodataset.org/>)
- Dataset size19G
@ -37,15 +38,16 @@ Dataset used: [COCO2017](<http://images.cocodataset.org/>)
1. If coco dataset is used. **Select dataset to coco when run script.**
Install Cython and pycocotool, and you can also install mmcv to process data.
```
```bash
pip install Cython
pip install pycocotools
```
And change the COCO_ROOT and other settings you need in `config.py`. The directory structure is as follows:
```
```python
.
└─cocodataset
├─annotations
@ -59,7 +61,7 @@ Dataset used: [COCO2017](<http://images.cocodataset.org/>)
2. If your own dataset is used. **Select dataset to other when run script.**
Organize the dataset infomation into a TXT file, each row in the file is as follows:
```
```python
train2017/0000001.jpg 0,259,401,459,7 35,28,324,201,2 0,30,59,80,2
```
@ -70,7 +72,7 @@ Dataset used: [COCO2017](<http://images.cocodataset.org/>)
After installing MindSpore via the official website, you can start training and evaluation on Ascend as follows:
```
```bash
# single npu training on Ascend
python train.py
@ -85,7 +87,7 @@ python eval.py --device_id 0 --dataset coco --checkpoint_path LOG4/ssd-500_458.c
## [Script and Sample Code](#contents)
```shell
```python
├── ssd_ghostnet
├── README.md ## readme file of ssd_ghostnet
@ -106,7 +108,7 @@ python eval.py --device_id 0 --dataset coco --checkpoint_path LOG4/ssd-500_458.c
## [Script Parameters](#contents)
```
```python
Major parameters in train.py and config_ghostnet_13x.py as follows:
"device_num": 1 # Use device nums
@ -129,39 +131,46 @@ python eval.py --device_id 0 --dataset coco --checkpoint_path LOG4/ssd-500_458.c
```
## [Training Process](#contents)
### Training on Ascend
To train the model, run `train.py`. If the `mindrecord_dir` is empty, it will generate [mindrecord](https://www.mindspore.cn/tutorial/training/zh-CN/master/advanced_use/convert_dataset.html) files by `coco_root`(coco dataset) or `iamge_dir` and `anno_path`(own dataset). **Note if mindrecord_dir isn't empty, it will use mindrecord_dir instead of raw images.**
- Distribute mode
```
```bash
sh run_distribute_train_ghostnet.sh [DEVICE_NUM] [EPOCH_SIZE] [LR] [DATASET] [RANK_TABLE_FILE] [PRE_TRAINED](optional) [PRE_TRAINED_EPOCH_SIZE](optional)
```
We need five or seven parameters for this scripts.
- `DEVICE_NUM`: the device number for distributed train.
- `EPOCH_NUM`: epoch num for distributed train.
- `LR`: learning rate init value for distributed train.
- `DATASET`the dataset mode for distributed train.
- `RANK_TABLE_FILE :` the path of [rank_table.json](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/utils/hccl_tools), it is better to use absolute path.
- `PRE_TRAINED :` the path of pretrained checkpoint file, it is better to use absolute path.
- `PRE_TRAINED_EPOCH_SIZE :` the epoch num of pretrained.
Training result will be stored in the current path, whose folder name begins with "LOG". Under this, you can find checkpoint file together with result like the followings in LOG4/log.txt.
Training result will be stored in the current path, whose folder name begins with "LOG". Under this, you can find checkpoint file together with result like the followings in LOG4/log.txt.
## [Evaluation Process](#contents)
### Evaluation on Ascend
```
```bash
python eval.py --device_id 0 --dataset coco --checkpoint_path LOG4/ssd-500_458.ckpt
```
# [Model Description](#contents)
## [Performance](#contents)
### Evaluation Performance
@ -177,7 +186,6 @@ python eval.py --device_id 0 --dataset coco --checkpoint_path LOG4/ssd-500_458.c
| Loss Function | Sigmoid Cross Entropy,SmoothL1Loss |
| Total time | 8pcs: 12hours |
### Inference Performance
| Parameters | Ascend |

@ -19,7 +19,7 @@ import os
import argparse
import time
import numpy as np
from mindspore import context, Tensor
from mindspore import context
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from src.ssd_ghostnet import SSD300, ssd_ghostnet
from src.dataset import create_ssd_dataset, data_to_mindrecord_byte_image, voc_data_to_mindrecord
@ -47,11 +47,11 @@ def ssd_eval(dataset_path, ckpt_path):
print("total images num: ", total)
print("Processing, please wait a moment.")
for data in ds.create_dict_iterator():
img_id = data['img_id']
img_id = data['img_id'].asnumpy()
img_np = data['image']
image_shape = data['image_shape']
image_shape = data['image_shape'].asnumpy()
output = net(Tensor(img_np))
output = net(img_np)
for batch_idx in range(img_np.shape[0]):
pred_data.append({"boxes": output[0].asnumpy()[batch_idx],
"box_scores": output[1].asnumpy()[batch_idx],

@ -24,7 +24,7 @@ import numpy as np
import cv2
import mindspore.dataset as de
import mindspore.dataset.transforms.vision.c_transforms as C
import mindspore.dataset.vision.c_transforms as C2
from mindspore.mindrecord import FileWriter
from .config_ghostnet_13x import config
from .box_utils import jaccard_numpy, ssd_bboxes_encode
@ -397,12 +397,12 @@ def create_ssd_dataset(mindrecord_file, batch_size=32, repeat_num=10, device_num
"""Create SSD dataset with MindDataset."""
ds = de.MindDataset(mindrecord_file, columns_list=["img_id", "image", "annotation"], num_shards=device_num,
shard_id=rank, num_parallel_workers=num_parallel_workers, shuffle=is_training)
decode = C.Decode()
decode = C2.Decode()
ds = ds.map(input_columns=["image"], operations=decode)
change_swap_op = C.HWC2CHW()
normalize_op = C.Normalize(
change_swap_op = C2.HWC2CHW()
normalize_op = C2.Normalize(
mean=[0.485*255, 0.456*255, 0.406*255], std=[0.229*255, 0.224*255, 0.225*255])
color_adjust_op = C.RandomColorAdjust(
color_adjust_op = C2.RandomColorAdjust(
brightness=0.4, contrast=0.4, saturation=0.4)
compose_map_func = (lambda img_id, image, annotation: preprocess_fn(
img_id, image, annotation, is_training))
@ -413,7 +413,7 @@ def create_ssd_dataset(mindrecord_file, batch_size=32, repeat_num=10, device_num
output_columns = ["img_id", "image", "image_shape"]
trans = [normalize_op, change_swap_op]
ds = ds.map(input_columns=["img_id", "image", "annotation"],
output_columns=output_columns, columns_order=output_columns,
output_columns=output_columns, column_order=output_columns,
operations=compose_map_func, python_multiprocessing=is_training,
num_parallel_workers=num_parallel_workers)
ds = ds.map(input_columns=["image"], operations=trans, python_multiprocessing=is_training,

@ -25,16 +25,16 @@ def init_net_param(network, initialize_mode='TruncatedNormal'):
if 'beta' not in p.name and 'gamma' not in p.name and 'bias' not in p.name:
np.random.seed(seed=1)
if initialize_mode == 'TruncatedNormal':
p.set_parameter_data(initializer(
p.set_data(initializer(
TruncatedNormal(), p.data.shape, p.data.dtype))
else:
p.set_parameter_data(
initialize_mode, p.data.shape, p.data.dtype)
p.set_data(
initialize_mode, p.data.shape)
def load_backbone_params(network, param_dict):
"""Init the parameters from pre-train model, default is mobilenetv2."""
for _, param in net.parameters_and_names():
for _, param in network.parameters_and_names():
param_name = param.name.replace('network.backbone.', '')
name_split = param_name.split('.')
if 'features_1' in param_name:

@ -118,13 +118,11 @@ class DepthwiseConv(nn.Cell):
stride=stride, pad_mode=pad_mode, pad=pad)
self.bias_add = P.BiasAdd()
weight_shape = [channel_multiplier, in_planes, *self.kernel_size]
self.weight = Parameter(initializer(
'ones', weight_shape))
self.weight = Parameter(initializer('ones', weight_shape), name="weight")
if has_bias:
bias_shape = [channel_multiplier * in_planes]
self.bias = Parameter(initializer(
'zeros', bias_shape))
self.bias = Parameter(initializer('zeros', bias_shape), name="bias")
else:
self.bias = None
@ -624,15 +622,15 @@ class TrainingWrapper(nn.Cell):
self.network = network
self.weights = ms.ParameterTuple(network.trainable_params())
self.optimizer = optimizer
self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True)
self.grad = C.GradOperation(get_by_list=True, sens_param=True)
self.sens = sens
self.reducer_flag = False
self.grad_reducer = None
self.parallel_mode = context.get_auto_parallel_context("parallel_mode")
if self.parallel_mode in [ms.ParallelMode.DATA_PARALLEL, ms.ParallelMode.HYBRID_PARALLEL]:
if self.parallel_mode in [context.ParallelMode.DATA_PARALLEL, context.ParallelMode.HYBRID_PARALLEL]:
self.reducer_flag = True
if self.reducer_flag:
mean = context.get_auto_parallel_context("mirror_mean")
mean = context.get_auto_parallel_context("gradients_mean")
if auto_parallel_context().get_device_num_is_set():
degree = context.get_auto_parallel_context("device_num")
else:

@ -70,7 +70,7 @@ def main():
if args_opt.distribute:
device_num = args_opt.device_num
context.reset_auto_parallel_context()
context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True,
context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True,
device_num=device_num)
init()
rank = args_opt.device_id % device_num

Loading…
Cancel
Save