!14665 update document of Conv3d

From: @mind-lh
Reviewed-by: @liangchenghui,@wuxuejian
Signed-off-by: @liangchenghui
pull/14665/MERGE
mindspore-ci-bot 4 years ago committed by Gitee
commit 394a3fe379

@ -505,10 +505,10 @@ class Conv3d(_Conv):
Args: Args:
in_channels (int): The number of input channel :math:`C_{in}`. in_channels (int): The number of input channel :math:`C_{in}`.
out_channels (int): The number of output channel :math:`C_{out}`. out_channels (int): The number of output channel :math:`C_{out}`.
kernel_size (Union[int, tuple[int]]): The data type is int or a tuple of 3 integers. Specifies the height kernel_size (Union[int, tuple[int]]): The data type is int or a tuple of 3 integers. Specifies the depth, height
and width of the 3D convolution window. Single int means the value is for the depth, height and the width and width of the 3D convolution window. Single int means the value is for the depth, height and the width of
of the kernel. A tuple of 3 ints means the first value is for the depth, second value is for height the kernel. A tuple of 3 ints means the first value is for the depth, second value is for height and the
and the other is for the width of the kernel. other is for the width of the kernel.
stride (Union[int, tuple[int]]): The distance of kernel moving, an int number that represents stride (Union[int, tuple[int]]): The distance of kernel moving, an int number that represents
the depth, height and width of movement are both strides, or a tuple of three int numbers that the depth, height and width of movement are both strides, or a tuple of three int numbers that
represent depth, height and width of movement respectively. Default: 1. represent depth, height and width of movement respectively. Default: 1.
@ -531,7 +531,7 @@ class Conv3d(_Conv):
padding (Union(int, tuple[int])): Implicit paddings on both sides of the input. padding (Union(int, tuple[int])): Implicit paddings on both sides of the input.
The data type is int or a tuple of 6 integers. Default: 0. If `padding` is an integer, The data type is int or a tuple of 6 integers. Default: 0. If `padding` is an integer,
the paddings of head, tail, top, bottom, left and right are the same, equal to padding. the paddings of head, tail, top, bottom, left and right are the same, equal to padding.
If `paddings` is a tuple of three integers, the padding of head, tail, top, bottom, left and right equal to If `paddings` is a tuple of six integers, the padding of head, tail, top, bottom, left and right equal to
padding[0], padding[1], padding[2], padding[3], padding[4] and padding[5] correspondingly. padding[0], padding[1], padding[2], padding[3], padding[4] and padding[5] correspondingly.
dilation (Union[int, tuple[int]]): The data type is int or a tuple of 3 integers dilation (Union[int, tuple[int]]): The data type is int or a tuple of 3 integers
: math:`(dilation_d, dilation_h, dilation_w)`. Currently, dilation on depth only supports the case of 1. : math:`(dilation_d, dilation_h, dilation_w)`. Currently, dilation on depth only supports the case of 1.
@ -561,7 +561,7 @@ class Conv3d(_Conv):
Raises: Raises:
TypeError: If `in_channels`, `out_channels` or `group` is not an int. TypeError: If `in_channels`, `out_channels` or `group` is not an int.
TypeError: If `kernel_size`, `stride`, `padding` or `dilation` is neither an int not a tuple of three. TypeError: If `kernel_size`, `stride`, `padding` or `dilation` is neither an int nor a tuple of six.
ValueError: If `out_channels`, `kernel_size`, `stride` or `dilation` is less than 1. ValueError: If `out_channels`, `kernel_size`, `stride` or `dilation` is less than 1.
ValueError: If `padding` is less than 0. ValueError: If `padding` is less than 0.
ValueError: If `pad_mode` is not one of 'same', 'valid', 'pad'. ValueError: If `pad_mode` is not one of 'same', 'valid', 'pad'.

@ -4187,7 +4187,7 @@ class Adam(PrimitiveWithInfer):
TypeError: If `beta1_power`, `beta2_power1`, `lr`, `beta1`, `beta2`, `epsilon` or `gradient` is not a Tensor. TypeError: If `beta1_power`, `beta2_power1`, `lr`, `beta1`, `beta2`, `epsilon` or `gradient` is not a Tensor.
Supported Platforms: Supported Platforms:
``Ascend`` ``GPU`` ``CPU`` ``Ascend`` ``GPU``
Examples: Examples:
>>> import numpy as np >>> import numpy as np
@ -4208,7 +4208,7 @@ class Adam(PrimitiveWithInfer):
... ...
>>> net = Net() >>> net = Net()
>>> gradient = Tensor(np.ones([2, 2]).astype(np.float32)) >>> gradient = Tensor(np.ones([2, 2]).astype(np.float32))
>>> net(0.9, 0.999, 0.001, 0.9, 0.999, 1e-8, gradient) >>> output = net(0.9, 0.999, 0.001, 0.9, 0.999, 1e-8, gradient)
>>> print(net.var.asnumpy()) >>> print(net.var.asnumpy())
[[0.9996838 0.9996838] [[0.9996838 0.9996838]
[0.9996838 0.9996838]] [0.9996838 0.9996838]]
@ -6386,7 +6386,7 @@ class LARSUpdate(PrimitiveWithInfer):
use_clip (bool): Whether to use clip operation for calculating the local learning rate. Default: False. use_clip (bool): Whether to use clip operation for calculating the local learning rate. Default: False.
Inputs: Inputs:
- **weight** (Tensor) - The weight to be updated. - **weight** (Tensor) - A tensor, representing the weight.
- **gradient** (Tensor) - The gradient of weight, which has the same shape and dtype with weight. - **gradient** (Tensor) - The gradient of weight, which has the same shape and dtype with weight.
- **norm_weight** (Tensor) - A scalar tensor, representing the sum of squares of weight. - **norm_weight** (Tensor) - A scalar tensor, representing the sum of squares of weight.
- **norm_gradient** (Tensor) - A scalar tensor, representing the sum of squares of gradient. - **norm_gradient** (Tensor) - A scalar tensor, representing the sum of squares of gradient.
@ -7717,7 +7717,7 @@ class Conv3D(PrimitiveWithInfer):
Args: Args:
out_channels (int): The number of output channel :math:`C_{out}`. out_channels (int): The number of output channel :math:`C_{out}`.
kernel_size (Union[int, tuple[int]]): The data type is int or a tuple of 3 integers. Specifies the height kernel_size (Union[int, tuple[int]]): The data type is int or a tuple of 3 integers. Specifies the depth, height
and width of the 3D convolution window. Single int means the value is for the depth, height and the width and width of the 3D convolution window. Single int means the value is for the depth, height and the width
of the kernel. A tuple of 3 ints means the first value is for the depth, height and the other is for the of the kernel. A tuple of 3 ints means the first value is for the depth, height and the other is for the
width of the kernel. width of the kernel.
@ -7768,7 +7768,7 @@ class Conv3D(PrimitiveWithInfer):
Raises: Raises:
TypeError: If `out_channel` or `group` is not an int. TypeError: If `out_channel` or `group` is not an int.
TypeError: If `kernel_size`, `stride`, `pad` or `dilation` is neither an int not a tuple. TypeError: If `kernel_size`, `stride`, `pad` or `dilation` is neither an int nor a tuple of six.
ValueError: If `out_channel`, `kernel_size`, `stride` or `dilation` is less than 1. ValueError: If `out_channel`, `kernel_size`, `stride` or `dilation` is less than 1.
ValueError: If `pad` is less than 0. ValueError: If `pad` is less than 0.
ValueError: If `pad_mode` is not one of 'same', 'valid', 'pad'. ValueError: If `pad_mode` is not one of 'same', 'valid', 'pad'.

Loading…
Cancel
Save