!9043 Add support to op L2Loss on gpu
From: @yuan_shen_zhou Reviewed-by: @liangchenghui,@liangchenghui Signed-off-by: @liangchenghui,@liangchenghuipull/9043/MERGE
commit
40222f59a7
@ -0,0 +1,38 @@
|
|||||||
|
/**
|
||||||
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include "l2_loss.cuh"
|
||||||
|
#include "runtime/device/gpu/cuda_common.h"
|
||||||
|
#include "backend/kernel_compiler/gpu/cuda_impl/util.cuh"
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
__global__ void L2LossKernel(const size_t input_size, const T *input , T *output) {
|
||||||
|
T ret = 0;
|
||||||
|
for (size_t id = blockIdx.x * blockDim.x + threadIdx.x; id < input_size; id += blockDim.x * gridDim.x) {
|
||||||
|
ret = (input[id] * input[id]);
|
||||||
|
ret /= static_cast<T>(2);
|
||||||
|
MsAtomicAdd(output, ret);
|
||||||
|
}
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
void L2Loss(const size_t input_size, const T *input , T *output, cudaStream_t stream) {
|
||||||
|
L2LossKernel<<<GET_BLOCKS(input_size), GET_THREADS, 0, stream>>>(input_size, input, output);
|
||||||
|
}
|
||||||
|
|
||||||
|
template void L2Loss<float>(const size_t input_size, const float *input , float *output, cudaStream_t stream);
|
||||||
|
template void L2Loss<half>(const size_t input_size, const half *input , half *output, cudaStream_t stream);
|
@ -0,0 +1,21 @@
|
|||||||
|
/**
|
||||||
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_L2_LOSS_H_
|
||||||
|
#define MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_L2_LOSS_H_
|
||||||
|
template <typename T>
|
||||||
|
void L2Loss(const size_t input_size, const T *input , T *output, cudaStream_t stream);
|
||||||
|
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_L2_LOSS_H_
|
@ -0,0 +1,26 @@
|
|||||||
|
/**
|
||||||
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include "backend/kernel_compiler/gpu/nn/l2_loss_gpu_kernel.h"
|
||||||
|
|
||||||
|
namespace mindspore {
|
||||||
|
namespace kernel {
|
||||||
|
MS_REG_GPU_KERNEL_ONE(L2Loss, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||||
|
L2LossGpuKernel, float)
|
||||||
|
MS_REG_GPU_KERNEL_ONE(L2Loss, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
|
||||||
|
L2LossGpuKernel, half)
|
||||||
|
} // namespace kernel
|
||||||
|
} // namespace mindspore
|
@ -0,0 +1,71 @@
|
|||||||
|
/**
|
||||||
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_L2_LOSS_GPU_KERNEL_H_
|
||||||
|
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_L2_LOSS_GPU_KERNEL_H_
|
||||||
|
|
||||||
|
#include <vector>
|
||||||
|
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
|
||||||
|
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
|
||||||
|
#include "backend/kernel_compiler/gpu/cuda_impl/l2_loss.cuh"
|
||||||
|
namespace mindspore {
|
||||||
|
namespace kernel {
|
||||||
|
template <typename T>
|
||||||
|
class L2LossGpuKernel : public GpuKernel {
|
||||||
|
public:
|
||||||
|
L2LossGpuKernel() : input_size_(1) {}
|
||||||
|
~L2LossGpuKernel() override = default;
|
||||||
|
|
||||||
|
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||||
|
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||||
|
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||||
|
|
||||||
|
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspaces,
|
||||||
|
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
|
||||||
|
T *input = GetDeviceAddress<T>(inputs, 0);
|
||||||
|
T *output = GetDeviceAddress<T>(outputs, 0);
|
||||||
|
|
||||||
|
L2Loss(input_size_, input, output, reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool Init(const CNodePtr &kernel_node) override {
|
||||||
|
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||||
|
for (size_t i = 0; i < input_shape.size(); i++) {
|
||||||
|
input_size_ *= input_shape[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
InitSizeLists();
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void InitSizeLists() override {
|
||||||
|
input_size_list_.push_back(input_size_ * sizeof(T));
|
||||||
|
output_size_list_.push_back(sizeof(T));
|
||||||
|
}
|
||||||
|
|
||||||
|
private:
|
||||||
|
size_t input_size_;
|
||||||
|
|
||||||
|
std::vector<size_t> input_size_list_;
|
||||||
|
std::vector<size_t> output_size_list_;
|
||||||
|
std::vector<size_t> workspace_size_list_;
|
||||||
|
};
|
||||||
|
} // namespace kernel
|
||||||
|
} // namespace mindspore
|
||||||
|
|
||||||
|
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_L2_LOSS_GPU_KERNEL_H_
|
@ -0,0 +1,100 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
import mindspore.context as context
|
||||||
|
import mindspore.nn as nn
|
||||||
|
import mindspore as ms
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.ops import operations as P
|
||||||
|
|
||||||
|
|
||||||
|
class L2LossNet(nn.Cell):
|
||||||
|
def __init__(self):
|
||||||
|
super(L2LossNet, self).__init__()
|
||||||
|
self.l2_loss = P.L2Loss()
|
||||||
|
|
||||||
|
def construct(self, x):
|
||||||
|
return self.l2_loss(x)
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_x86_gpu_training
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
def test_gather_pynative_fp32_22():
|
||||||
|
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||||
|
error = 1e-4
|
||||||
|
x = Tensor(np.array([[1., 2.], [3., 4.]]), ms.float32)
|
||||||
|
expect = np.array(15, np.float32)
|
||||||
|
output = P.L2Loss()(x)
|
||||||
|
diff = output.asnumpy() - expect
|
||||||
|
assert np.all(diff < error)
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_x86_gpu_training
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
def test_gather_pynative_fp16_22():
|
||||||
|
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||||
|
error = 1e-4
|
||||||
|
x = Tensor(np.array([[1., 2.], [3., 4.]]), ms.float16)
|
||||||
|
expect = np.array(15, np.float16)
|
||||||
|
output = P.L2Loss()(x)
|
||||||
|
diff = output.asnumpy() - expect
|
||||||
|
assert np.all(diff < error)
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_x86_gpu_training
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
def test_gather_pynative_fp32_14():
|
||||||
|
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||||
|
error = 1e-4
|
||||||
|
x = Tensor(np.array([1., 2., 3., 4.]), ms.float32)
|
||||||
|
expect = np.array(15, np.float32)
|
||||||
|
output = P.L2Loss()(x)
|
||||||
|
diff = output.asnumpy() - expect
|
||||||
|
assert np.all(diff < error)
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_x86_gpu_training
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
def test_gather_pynative_fp16_14():
|
||||||
|
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||||
|
error = 1e-4
|
||||||
|
x = Tensor(np.array([1., 2., 3., 4.]), ms.float16)
|
||||||
|
expect = np.array(15, np.float16)
|
||||||
|
output = P.L2Loss()(x)
|
||||||
|
diff = output.asnumpy() - expect
|
||||||
|
assert np.all(diff < error)
|
||||||
|
|
||||||
|
def test_gather_graph_fp32_14():
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||||
|
error = 1e-4
|
||||||
|
x = Tensor(np.array([1., 2., 3., 4.]), ms.float32)
|
||||||
|
expect = np.array(15, np.float32)
|
||||||
|
l2_loss = L2LossNet()
|
||||||
|
output = l2_loss(x)
|
||||||
|
diff = output.asnumpy() - expect
|
||||||
|
assert np.all(diff < error)
|
||||||
|
|
||||||
|
def test_gather_graph_fp16_14():
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||||
|
error = 1e-4
|
||||||
|
x = Tensor(np.array([1., 2., 3., 4.]), ms.float16)
|
||||||
|
expect = np.array(15, np.float16)
|
||||||
|
l2_loss = L2LossNet()
|
||||||
|
output = l2_loss(x)
|
||||||
|
diff = output.asnumpy() - expect
|
||||||
|
assert np.all(diff < error)
|
Loading…
Reference in new issue