|
|
@ -67,12 +67,6 @@ def transpose_hwc2whc(image):
|
|
|
|
return image
|
|
|
|
return image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def transpose_hwc2chw(image):
|
|
|
|
|
|
|
|
"""transpose image from HWC to CHW"""
|
|
|
|
|
|
|
|
image = np.transpose(image, (2, 0, 1))
|
|
|
|
|
|
|
|
return image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def create_dataset(dataset_path, batch_size=1, num_shards=1, shard_id=0, device_target='Ascend'):
|
|
|
|
def create_dataset(dataset_path, batch_size=1, num_shards=1, shard_id=0, device_target='Ascend'):
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
create train or evaluation dataset for warpctc
|
|
|
|
create train or evaluation dataset for warpctc
|
|
|
@ -93,14 +87,20 @@ def create_dataset(dataset_path, batch_size=1, num_shards=1, shard_id=0, device_
|
|
|
|
vc.Resize((m.ceil(cf.captcha_height / 16) * 16, cf.captcha_width)),
|
|
|
|
vc.Resize((m.ceil(cf.captcha_height / 16) * 16, cf.captcha_width)),
|
|
|
|
c.TypeCast(mstype.float16)
|
|
|
|
c.TypeCast(mstype.float16)
|
|
|
|
]
|
|
|
|
]
|
|
|
|
|
|
|
|
image_trans_gpu = [
|
|
|
|
|
|
|
|
vc.Rescale(1.0 / 255.0, 0.0),
|
|
|
|
|
|
|
|
vc.Normalize([0.9010, 0.9049, 0.9025], std=[0.1521, 0.1347, 0.1458]),
|
|
|
|
|
|
|
|
vc.Resize((m.ceil(cf.captcha_height / 16) * 16, cf.captcha_width)),
|
|
|
|
|
|
|
|
vc.HWC2CHW()
|
|
|
|
|
|
|
|
]
|
|
|
|
label_trans = [
|
|
|
|
label_trans = [
|
|
|
|
c.TypeCast(mstype.int32)
|
|
|
|
c.TypeCast(mstype.int32)
|
|
|
|
]
|
|
|
|
]
|
|
|
|
data_set = data_set.map(operations=image_trans, input_columns=["image"], num_parallel_workers=8)
|
|
|
|
|
|
|
|
if device_target == 'Ascend':
|
|
|
|
if device_target == 'Ascend':
|
|
|
|
|
|
|
|
data_set = data_set.map(operations=image_trans, input_columns=["image"], num_parallel_workers=8)
|
|
|
|
data_set = data_set.map(operations=transpose_hwc2whc, input_columns=["image"], num_parallel_workers=8)
|
|
|
|
data_set = data_set.map(operations=transpose_hwc2whc, input_columns=["image"], num_parallel_workers=8)
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
data_set = data_set.map(operations=transpose_hwc2chw, input_columns=["image"], num_parallel_workers=8)
|
|
|
|
data_set = data_set.map(operations=image_trans_gpu, input_columns=["image"], num_parallel_workers=8)
|
|
|
|
data_set = data_set.map(operations=label_trans, input_columns=["label"], num_parallel_workers=8)
|
|
|
|
data_set = data_set.map(operations=label_trans, input_columns=["label"], num_parallel_workers=8)
|
|
|
|
|
|
|
|
|
|
|
|
data_set = data_set.batch(batch_size, drop_remainder=True)
|
|
|
|
data_set = data_set.batch(batch_size, drop_remainder=True)
|
|
|
|