parent
2bcff36e4a
commit
5105e95160
@ -0,0 +1,58 @@
|
|||||||
|
# AlexNet Example
|
||||||
|
|
||||||
|
## Description
|
||||||
|
|
||||||
|
Training AlexNet with CIFAR-10 dataset in MindSpore.
|
||||||
|
|
||||||
|
This is the simple tutorial for training AlexNet in MindSpore.
|
||||||
|
|
||||||
|
## Requirements
|
||||||
|
|
||||||
|
- Install [MindSpore](https://www.mindspore.cn/install/en).
|
||||||
|
|
||||||
|
- Download the CIFAR-10 dataset at <http://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz>. The directory structure is as follows:
|
||||||
|
|
||||||
|
```
|
||||||
|
├─cifar-10-batches-bin
|
||||||
|
│
|
||||||
|
└─cifar-10-verify-bin
|
||||||
|
```
|
||||||
|
|
||||||
|
## Running the example
|
||||||
|
|
||||||
|
```python
|
||||||
|
# train AlexNet, hyperparameter setting in config.py
|
||||||
|
python train.py --data_path cifar-10-batches-bin
|
||||||
|
```
|
||||||
|
|
||||||
|
You can get loss with each step similar to this:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
epoch: 1 step: 1, loss is 2.2791853
|
||||||
|
...
|
||||||
|
epoch: 1 step: 1536, loss is 1.9366643
|
||||||
|
epoch: 1 step: 1537, loss is 1.6983616
|
||||||
|
epoch: 1 step: 1538, loss is 1.0221305
|
||||||
|
...
|
||||||
|
```
|
||||||
|
|
||||||
|
Then, test AlexNet according to network model
|
||||||
|
```python
|
||||||
|
# test AlexNet, 1 epoch training accuracy is up to 51.1%; 10 epoch training accuracy is up to 81.2%
|
||||||
|
python eval.py --data_path cifar-10-verify-bin --mode test --ckpt_path checkpoint_alexnet-1_1562.ckpt
|
||||||
|
```
|
||||||
|
|
||||||
|
## Note
|
||||||
|
There are some optional arguments:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
-h, --help show this help message and exit
|
||||||
|
--device_target {Ascend,GPU}
|
||||||
|
device where the code will be implemented (default: Ascend)
|
||||||
|
--data_path DATA_PATH
|
||||||
|
path where the dataset is saved
|
||||||
|
--dataset_sink_mode DATASET_SINK_MODE
|
||||||
|
dataset_sink_mode is False or True
|
||||||
|
```
|
||||||
|
|
||||||
|
You can run ```python train.py -h``` or ```python eval.py -h``` to get more information.
|
@ -0,0 +1,63 @@
|
|||||||
|
# LeNet Example
|
||||||
|
|
||||||
|
## Description
|
||||||
|
|
||||||
|
Training LeNet with MNIST dataset in MindSpore.
|
||||||
|
|
||||||
|
This is the simple and basic tutorial for constructing a network in MindSpore.
|
||||||
|
|
||||||
|
## Requirements
|
||||||
|
|
||||||
|
- Install [MindSpore](https://www.mindspore.cn/install/en).
|
||||||
|
|
||||||
|
- Download the MNIST dataset at <http://yann.lecun.com/exdb/mnist/>. The directory structure is as follows:
|
||||||
|
|
||||||
|
```
|
||||||
|
└─MNIST_Data
|
||||||
|
├─test
|
||||||
|
│ t10k-images.idx3-ubyte
|
||||||
|
│ t10k-labels.idx1-ubyte
|
||||||
|
│
|
||||||
|
└─train
|
||||||
|
train-images.idx3-ubyte
|
||||||
|
train-labels.idx1-ubyte
|
||||||
|
```
|
||||||
|
|
||||||
|
## Running the example
|
||||||
|
|
||||||
|
```python
|
||||||
|
# train LeNet, hyperparameter setting in config.py
|
||||||
|
python train.py --data_path MNIST_Data
|
||||||
|
```
|
||||||
|
|
||||||
|
You can get loss with each step similar to this:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
epoch: 1 step: 1, loss is 2.3040335
|
||||||
|
...
|
||||||
|
epoch: 1 step: 1739, loss is 0.06952668
|
||||||
|
epoch: 1 step: 1740, loss is 0.05038793
|
||||||
|
epoch: 1 step: 1741, loss is 0.05018193
|
||||||
|
...
|
||||||
|
```
|
||||||
|
|
||||||
|
Then, test LeNet according to network model
|
||||||
|
```python
|
||||||
|
# test LeNet, after 1 epoch training, the accuracy is up to 96.5%
|
||||||
|
python eval.py --data_path MNIST_Data --mode test --ckpt_path checkpoint_lenet-1_1875.ckpt
|
||||||
|
```
|
||||||
|
|
||||||
|
## Note
|
||||||
|
There are some optional arguments:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
-h, --help show this help message and exit
|
||||||
|
--device_target {Ascend,GPU,CPU}
|
||||||
|
device where the code will be implemented (default: Ascend)
|
||||||
|
--data_path DATA_PATH
|
||||||
|
path where the dataset is saved
|
||||||
|
--dataset_sink_mode DATASET_SINK_MODE
|
||||||
|
dataset_sink_mode is False or True
|
||||||
|
```
|
||||||
|
|
||||||
|
You can run ```python train.py -h``` or ```python eval.py -h``` to get more information.
|
Loading…
Reference in new issue