|  |  | @ -104,9 +104,9 @@ def do_eval(dataset=None, network=None, use_crf="", num_class=2, assessment_meth | 
			
		
	
		
		
			
				
					
					|  |  |  |     if load_checkpoint_path == "": |  |  |  |     if load_checkpoint_path == "": | 
			
		
	
		
		
			
				
					
					|  |  |  |         raise ValueError("Finetune model missed, evaluation task must load finetune model!") |  |  |  |         raise ValueError("Finetune model missed, evaluation task must load finetune model!") | 
			
		
	
		
		
			
				
					
					|  |  |  |     if assessment_method == "clue_benchmark": |  |  |  |     if assessment_method == "clue_benchmark": | 
			
		
	
		
		
			
				
					
					|  |  |  |         bert_net_cfg.batch_size = 1 |  |  |  |         optimizer_cfg.batch_size = 1 | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |     net_for_pretraining = network(bert_net_cfg, False, num_class, use_crf=(use_crf.lower() == "true"), |  |  |  |     net_for_pretraining = network(bert_net_cfg, optimizer_cfg.batch_size, False, num_class, | 
			
				
				
			
		
	
		
		
			
				
					
					|  |  |  |                                   tag_to_index=tag_to_index) |  |  |  |                                   use_crf=(use_crf.lower() == "true"), tag_to_index=tag_to_index) | 
			
				
				
			
		
	
		
		
	
		
		
	
		
		
	
		
		
			
				
					
					|  |  |  |     net_for_pretraining.set_train(False) |  |  |  |     net_for_pretraining.set_train(False) | 
			
		
	
		
		
			
				
					
					|  |  |  |     param_dict = load_checkpoint(load_checkpoint_path) |  |  |  |     param_dict = load_checkpoint(load_checkpoint_path) | 
			
		
	
		
		
			
				
					
					|  |  |  |     load_param_into_net(net_for_pretraining, param_dict) |  |  |  |     load_param_into_net(net_for_pretraining, param_dict) | 
			
		
	
	
		
		
			
				
					|  |  | @ -211,11 +211,11 @@ def run_ner(): | 
			
		
	
		
		
			
				
					
					|  |  |  |         number_labels = len(tag_to_index) |  |  |  |         number_labels = len(tag_to_index) | 
			
		
	
		
		
			
				
					
					|  |  |  |     else: |  |  |  |     else: | 
			
		
	
		
		
			
				
					
					|  |  |  |         number_labels = args_opt.num_class |  |  |  |         number_labels = args_opt.num_class | 
			
		
	
		
		
			
				
					
					|  |  |  |     netwithloss = BertNER(bert_net_cfg, True, num_labels=number_labels, |  |  |  |     netwithloss = BertNER(bert_net_cfg, optimizer_cfg.batch_size, True, num_labels=number_labels, | 
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					|  |  |  |                           use_crf=(args_opt.use_crf.lower() == "true"), |  |  |  |                           use_crf=(args_opt.use_crf.lower() == "true"), | 
			
		
	
		
		
			
				
					
					|  |  |  |                           tag_to_index=tag_to_index, dropout_prob=0.1) |  |  |  |                           tag_to_index=tag_to_index, dropout_prob=0.1) | 
			
		
	
		
		
			
				
					
					|  |  |  |     if args_opt.do_train.lower() == "true": |  |  |  |     if args_opt.do_train.lower() == "true": | 
			
		
	
		
		
			
				
					
					|  |  |  |         ds = create_ner_dataset(batch_size=bert_net_cfg.batch_size, repeat_count=1, |  |  |  |         ds = create_ner_dataset(batch_size=optimizer_cfg.batch_size, repeat_count=1, | 
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					|  |  |  |                                 assessment_method=assessment_method, data_file_path=args_opt.train_data_file_path, |  |  |  |                                 assessment_method=assessment_method, data_file_path=args_opt.train_data_file_path, | 
			
		
	
		
		
			
				
					
					|  |  |  |                                 schema_file_path=args_opt.schema_file_path, |  |  |  |                                 schema_file_path=args_opt.schema_file_path, | 
			
		
	
		
		
			
				
					
					|  |  |  |                                 do_shuffle=(args_opt.train_data_shuffle.lower() == "true")) |  |  |  |                                 do_shuffle=(args_opt.train_data_shuffle.lower() == "true")) | 
			
		
	
	
		
		
			
				
					|  |  | 
 |