!9229 update toolbox
From: @zhangxinfeng3 Reviewed-by: @sunnybeike,@wang_zi_dong Signed-off-by: @sunnybeikepull/9229/MERGE
commit
55cc959ac7
@ -0,0 +1,91 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""Toolbox for anomaly detection by using VAE."""
|
||||
import numpy as np
|
||||
|
||||
from ..dpn import VAE
|
||||
from ..infer import ELBO, SVI
|
||||
from ...optim import Adam
|
||||
from ...wrap.cell_wrapper import WithLossCell
|
||||
|
||||
|
||||
class VAEAnomalyDetection:
|
||||
r"""
|
||||
Toolbox for anomaly detection by using VAE.
|
||||
|
||||
Variational Auto-Encoder(VAE) can be used for Unsupervised Anomaly Detection. The anomaly score is the error
|
||||
between the X and the reconstruction. If the score is high, the X is mostly outlier.
|
||||
|
||||
Args:
|
||||
encoder(Cell): The Deep Neural Network (DNN) model defined as encoder.
|
||||
decoder(Cell): The DNN model defined as decoder.
|
||||
hidden_size(int): The size of encoder's output tensor.
|
||||
latent_size(int): The size of the latent space.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, encoder, decoder, hidden_size=400, latent_size=20):
|
||||
self.vae = VAE(encoder, decoder, hidden_size, latent_size)
|
||||
|
||||
def train(self, train_dataset, epochs=5):
|
||||
"""
|
||||
Train the VAE model.
|
||||
|
||||
Args:
|
||||
train_dataset (Dataset): A dataset iterator to train model.
|
||||
epochs (int): Total number of iterations on the data. Default: 5.
|
||||
|
||||
Returns:
|
||||
Cell, the trained model.
|
||||
"""
|
||||
net_loss = ELBO()
|
||||
optimizer = Adam(params=self.vae.trainable_params(), learning_rate=0.001)
|
||||
net_with_loss = WithLossCell(self.vae, net_loss)
|
||||
vi = SVI(net_with_loss=net_with_loss, optimizer=optimizer)
|
||||
self.vae = vi.run(train_dataset, epochs)
|
||||
return self.vae
|
||||
|
||||
def predict_outlier_score(self, sample_x):
|
||||
"""
|
||||
Predict the outlier score.
|
||||
|
||||
Args:
|
||||
sample_x (Tensor): The sample to be predicted, the shape is (N, C, H, W).
|
||||
|
||||
Returns:
|
||||
numpy.dtype, the predicted outlier score of the sample.
|
||||
"""
|
||||
reconstructed_sample = self.vae.reconstruct_sample(sample_x)
|
||||
return self._calculate_euclidean_distance(sample_x.asnumpy(), reconstructed_sample.asnumpy())
|
||||
|
||||
def predict_outlier(self, sample_x, threshold=100.0):
|
||||
"""
|
||||
Predict whether the sample is an outlier.
|
||||
|
||||
Args:
|
||||
sample_x (Tensor): The sample to be predicted, the shape is (N, C, H, W).
|
||||
threshold (float): the threshold of the outlier. Default: 100.0.
|
||||
|
||||
Returns:
|
||||
Bool, whether the sample is an outlier.
|
||||
"""
|
||||
score = self.predict_outlier_score(sample_x)
|
||||
return score >= threshold
|
||||
|
||||
def _calculate_euclidean_distance(self, sample_x, reconstructed_sample):
|
||||
"""
|
||||
Calculate the euclidean distance of the sample_x and reconstructed_sample.
|
||||
"""
|
||||
return np.sqrt(np.sum(np.square(sample_x - reconstructed_sample)))
|
Loading…
Reference in new issue