|
|
|
@ -362,8 +362,9 @@ class Conv2dBnFoldQuantOneConv(Cell):
|
|
|
|
|
var_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the
|
|
|
|
|
variance vector. Default: 'ones'.
|
|
|
|
|
fake (bool): Whether Conv2dBnFoldQuant Cell adds FakeQuantWithMinMaxObserver. Default: True.
|
|
|
|
|
quant_config (QuantConfig): Configs the oberser types and quant configs of weight and activation. Default:
|
|
|
|
|
both set to default FakeQuantWithMinMaxObserver.
|
|
|
|
|
quant_config (QuantConfig): Configs the oberser types and quant settings of weight and activation. Can be
|
|
|
|
|
generated by compression.quant.create_quant_config method.
|
|
|
|
|
Default: both set to default FakeQuantWithMinMaxObserver.
|
|
|
|
|
quant_dtype (QuantDtype): Specifies the FakeQuant datatype. Default: QuantDtype.INT8.
|
|
|
|
|
|
|
|
|
|
Inputs:
|
|
|
|
@ -576,8 +577,9 @@ class Conv2dBnFoldQuant(Cell):
|
|
|
|
|
var_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the
|
|
|
|
|
variance vector. Default: 'ones'.
|
|
|
|
|
fake (bool): Whether Conv2dBnFoldQuant Cell adds FakeQuantWithMinMaxObserver. Default: True.
|
|
|
|
|
quant_config (QuantConfig): Configs the oberser types and quant configs of weight and activation. Default:
|
|
|
|
|
both set to default FakeQuantWithMinMaxObserver.
|
|
|
|
|
quant_config (QuantConfig): Configs the oberser types and quant settings of weight and activation. Can be
|
|
|
|
|
generated by compression.quant.create_quant_config method.
|
|
|
|
|
Default: both set to default FakeQuantWithMinMaxObserver.
|
|
|
|
|
quant_dtype (QuantDtype): Specifies the FakeQuant datatype. Default: QuantDtype.INT8.
|
|
|
|
|
freeze_bn (int): The quantization freeze BatchNormal op is according to the global step. Default: 100000.
|
|
|
|
|
|
|
|
|
@ -753,8 +755,9 @@ class Conv2dBnWithoutFoldQuant(Cell):
|
|
|
|
|
weight_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the convolution kernel.
|
|
|
|
|
Default: 'normal'.
|
|
|
|
|
bias_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the bias vector. Default: 'zeros'.
|
|
|
|
|
quant_config (QuantConfig): Configs the oberser types and quant configs of weight and activation. Default:
|
|
|
|
|
both set to default FakeQuantWithMinMaxObserver.
|
|
|
|
|
quant_config (QuantConfig): Configs the oberser types and quant settings of weight and activation. Can be
|
|
|
|
|
generated by compression.quant.create_quant_config method.
|
|
|
|
|
Default: both set to default FakeQuantWithMinMaxObserver.
|
|
|
|
|
quant_dtype (QuantDtype): Specifies the FakeQuant datatype. Default: QuantDtype.INT8.
|
|
|
|
|
|
|
|
|
|
Inputs:
|
|
|
|
@ -865,8 +868,9 @@ class Conv2dQuant(Cell):
|
|
|
|
|
weight_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the convolution kernel.
|
|
|
|
|
Default: 'normal'.
|
|
|
|
|
bias_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the bias vector. Default: 'zeros'.
|
|
|
|
|
quant_config (QuantConfig): Configs the oberser types and quant configs of weight and activation. Default:
|
|
|
|
|
both set to default FakeQuantWithMinMaxObserver.
|
|
|
|
|
quant_config (QuantConfig): Configs the oberser types and quant settings of weight and activation. Can be
|
|
|
|
|
generated by compression.quant.create_quant_config method.
|
|
|
|
|
Default: both set to default FakeQuantWithMinMaxObserver.
|
|
|
|
|
quant_dtype (QuantDtype): Specifies the FakeQuant datatype. Default: QuantDtype.INT8.
|
|
|
|
|
|
|
|
|
|
Inputs:
|
|
|
|
@ -970,8 +974,9 @@ class DenseQuant(Cell):
|
|
|
|
|
has_bias (bool): Specifies whether the layer uses a bias vector. Default: True.
|
|
|
|
|
activation (Union[str, Cell, Primitive]): The regularization function applied to the output of the layer,
|
|
|
|
|
eg. 'relu'. Default: None.
|
|
|
|
|
quant_config (QuantConfig): Configs the oberser types and quant configs of weight and activation. Default:
|
|
|
|
|
both set to default FakeQuantWithMinMaxObserver.
|
|
|
|
|
quant_config (QuantConfig): Configs the oberser types and quant settings of weight and activation. Can be
|
|
|
|
|
generated by compression.quant.create_quant_config method.
|
|
|
|
|
Default: both set to default FakeQuantWithMinMaxObserver.
|
|
|
|
|
quant_dtype (QuantDtype): Specifies the FakeQuant datatype. Default: QuantDtype.INT8.
|
|
|
|
|
|
|
|
|
|
Inputs:
|
|
|
|
@ -1080,8 +1085,9 @@ class ActQuant(_QuantActivation):
|
|
|
|
|
ema (bool): The exponential Moving Average algorithm updates min and max. Default: False.
|
|
|
|
|
ema_decay (float): Exponential Moving Average algorithm parameter. Default: 0.999.
|
|
|
|
|
fake_before (bool): Whether add fake quantized operation before activation. Default: False.
|
|
|
|
|
quant_config (QuantConfig): Configs the oberser types and quant configs of weight and activation. Default:
|
|
|
|
|
both set to default FakeQuantWithMinMaxObserver.
|
|
|
|
|
quant_config (QuantConfig): Configs the oberser types and quant settings of weight and activation. Can be
|
|
|
|
|
generated by compression.quant.create_quant_config method.
|
|
|
|
|
Default: both set to default FakeQuantWithMinMaxObserver.
|
|
|
|
|
quant_dtype (QuantDtype): Specifies the FakeQuant datatype. Default: QuantDtype.INT8.
|
|
|
|
|
|
|
|
|
|
Inputs:
|
|
|
|
@ -1144,8 +1150,9 @@ class TensorAddQuant(Cell):
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
ema_decay (float): Exponential Moving Average algorithm parameter. Default: 0.999.
|
|
|
|
|
quant_config (QuantConfig): Configs the oberser types and quant configs of weight and activation. Default:
|
|
|
|
|
both set to default FakeQuantWithMinMaxObserver.
|
|
|
|
|
quant_config (QuantConfig): Configs the oberser types and quant settings of weight and activation. Can be
|
|
|
|
|
generated by compression.quant.create_quant_config method.
|
|
|
|
|
Default: both set to default FakeQuantWithMinMaxObserver.
|
|
|
|
|
quant_dtype (QuantDtype): Specifies the FakeQuant datatype. Default: QuantDtype.INT8.
|
|
|
|
|
|
|
|
|
|
Inputs:
|
|
|
|
@ -1195,8 +1202,9 @@ class MulQuant(Cell):
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
ema_decay (float): Exponential Moving Average algorithm parameter. Default: 0.999.
|
|
|
|
|
quant_config (QuantConfig): Configs the oberser types and quant configs of weight and activation. Default:
|
|
|
|
|
both set to default FakeQuantWithMinMaxObserver.
|
|
|
|
|
quant_config (QuantConfig): Configs the oberser types and quant settings of weight and activation. Can be
|
|
|
|
|
generated by compression.quant.create_quant_config method.
|
|
|
|
|
Default: both set to default FakeQuantWithMinMaxObserver.
|
|
|
|
|
quant_dtype (QuantDtype): Specifies the FakeQuant datatype. Default: QuantDtype.INT8.
|
|
|
|
|
|
|
|
|
|
Inputs:
|
|
|
|
|