parent
b0a2f864d4
commit
58982e598e
@ -0,0 +1,128 @@
|
|||||||
|
# ResNet-50-THOR Example
|
||||||
|
|
||||||
|
## Description
|
||||||
|
|
||||||
|
This is an example of training ResNet-50 V1.5 with ImageNet2012 dataset by second-order optimizer THOR. THOR is a novel approximate seond-order optimization method in MindSpore. With fewer iterations, THOR can finish ResNet-50 V1.5 training in 72 minutes to top-1 accuracy of 75.9% using 8 Ascend 910, which is much faster than SGD with Momentum.
|
||||||
|
|
||||||
|
## Requirements
|
||||||
|
|
||||||
|
- Install [MindSpore](https://www.mindspore.cn/install/en).
|
||||||
|
|
||||||
|
- Download the dataset ImageNet2012
|
||||||
|
|
||||||
|
> Unzip the ImageNet2012 dataset to any path you want and the folder structure should include train and eval dataset as follows:
|
||||||
|
> ```
|
||||||
|
> .
|
||||||
|
> ├── ilsvrc # train dataset
|
||||||
|
> └── ilsvrc_eval # infer dataset
|
||||||
|
> ```
|
||||||
|
|
||||||
|
|
||||||
|
## Example structure
|
||||||
|
|
||||||
|
```shell
|
||||||
|
.
|
||||||
|
├── resnet_thor
|
||||||
|
├── README.md
|
||||||
|
├── src
|
||||||
|
├── crossentropy.py # CrossEntropy loss function
|
||||||
|
├── config.py # parameter configuration
|
||||||
|
├── resnet50.py # resnet50 backbone
|
||||||
|
├── dataset_helper.py # dataset help for minddata dataset
|
||||||
|
├── grad_reducer_thor.py # grad reducer for thor
|
||||||
|
├── model_thor.py # model
|
||||||
|
├── resnet_thor.py # resnet50_thor backone
|
||||||
|
├── thor.py # thor
|
||||||
|
├── thor_layer.py # thor layer
|
||||||
|
└── dataset_imagenet.py # data preprocessing
|
||||||
|
├── scripts
|
||||||
|
├── run_distribute_train.sh # launch distributed training(8 pcs)
|
||||||
|
└── run_eval.sh # launch infering
|
||||||
|
├── eval.py # infer script
|
||||||
|
└── train.py # train script
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
## Parameter configuration
|
||||||
|
|
||||||
|
Parameters for both training and inference can be set in config.py.
|
||||||
|
|
||||||
|
```
|
||||||
|
"class_num": 1000, # dataset class number
|
||||||
|
"batch_size": 32, # batch size of input tensor
|
||||||
|
"loss_scale": 128, # loss scale
|
||||||
|
"momentum": 0.9, # momentum of THOR optimizer
|
||||||
|
"weight_decay": 5e-4, # weight decay
|
||||||
|
"epoch_size": 45, # only valid for taining, which is always 1 for inference
|
||||||
|
"buffer_size": 1000, # number of queue size in data preprocessing
|
||||||
|
"image_height": 224, # image height
|
||||||
|
"image_width": 224, # image width
|
||||||
|
"save_checkpoint": True, # whether save checkpoint or not
|
||||||
|
"save_checkpoint_steps": 5004, # the step interval between two checkpoints. By default, the checkpoint will be saved every epoch
|
||||||
|
"keep_checkpoint_max": 20, # only keep the last keep_checkpoint_max checkpoint
|
||||||
|
"save_checkpoint_path": "./", # path to save checkpoint relative to the executed path
|
||||||
|
"label_smooth": True, # label smooth
|
||||||
|
"label_smooth_factor": 0.1, # label smooth factor
|
||||||
|
"frequency": 834, # the step interval to update second-order information matrix
|
||||||
|
```
|
||||||
|
|
||||||
|
## Running the example
|
||||||
|
|
||||||
|
### Train
|
||||||
|
|
||||||
|
#### Usage
|
||||||
|
|
||||||
|
```
|
||||||
|
# distributed training
|
||||||
|
Usage: sh run_distribute_train.sh [MINDSPORE_HCCL_CONFIG_PATH] [DATASET_PATH] [DEVICE_NUM]
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
#### Launch
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# distributed training example(8 pcs)
|
||||||
|
sh run_distribute_train.sh rank_table_8p.json dataset/ilsvrc
|
||||||
|
```
|
||||||
|
|
||||||
|
> About rank_table.json, you can refer to the [distributed training tutorial](https://www.mindspore.cn/tutorial/en/master/advanced_use/distributed_training.html).
|
||||||
|
|
||||||
|
#### Result
|
||||||
|
|
||||||
|
Training result will be stored in the example path, whose folder name begins with "train_parallel". Under this, you can find checkpoint file together with result like the followings in log.
|
||||||
|
|
||||||
|
```
|
||||||
|
# distribute training result(8 pcs)
|
||||||
|
epoch: 1 step: 5004, loss is 4.4182425
|
||||||
|
epoch: 2 step: 5004, loss is 3.740064
|
||||||
|
epoch: 3 step: 5004, loss is 4.0546017
|
||||||
|
epoch: 4 step: 5004, loss is 3.7598825
|
||||||
|
epoch: 5 step: 5004, loss is 3.3744206
|
||||||
|
......
|
||||||
|
```
|
||||||
|
|
||||||
|
### Infer
|
||||||
|
|
||||||
|
#### Usage
|
||||||
|
|
||||||
|
```
|
||||||
|
# infer
|
||||||
|
Usage: sh run_eval.sh [DATASET_PATH] [CHECKPOINT_PATH]
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Launch
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# infer with checkpoint
|
||||||
|
sh run_eval.sh dataset/ilsvrc_eval train_parallel0/resnet-42_5004.ckpt
|
||||||
|
```
|
||||||
|
|
||||||
|
> checkpoint can be produced in training process.
|
||||||
|
|
||||||
|
#### Result
|
||||||
|
|
||||||
|
Inference result will be stored in the example path, whose folder name is "infer". Under this, you can find result like the followings in log.
|
||||||
|
|
||||||
|
```
|
||||||
|
result: {'acc': 0.759503041} ckpt=train_parallel0/resnet-42_5004.ckpt
|
||||||
|
```
|
@ -0,0 +1,62 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""
|
||||||
|
eval.
|
||||||
|
"""
|
||||||
|
import os
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
from mindspore import context
|
||||||
|
from mindspore.train.model import Model
|
||||||
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||||
|
|
||||||
|
from src.dataset_imagenet import create_dataset
|
||||||
|
from src.config import config
|
||||||
|
from src.crossentropy import CrossEntropy
|
||||||
|
from src.resnet50 import resnet50
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser(description='Image classification')
|
||||||
|
parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
|
||||||
|
parser.add_argument('--device_num', type=int, default=1, help='Device num.')
|
||||||
|
parser.add_argument('--do_train', type=bool, default=False, help='Do train or not.')
|
||||||
|
parser.add_argument('--do_eval', type=bool, default=True, help='Do eval or not.')
|
||||||
|
parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
|
||||||
|
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
|
||||||
|
args_opt = parser.parse_args()
|
||||||
|
|
||||||
|
device_id = int(os.getenv('DEVICE_ID'))
|
||||||
|
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False)
|
||||||
|
context.set_context(device_id=device_id)
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
|
||||||
|
net = resnet50(class_num=config.class_num)
|
||||||
|
if not config.label_smooth:
|
||||||
|
config.label_smooth_factor = 0.0
|
||||||
|
loss = CrossEntropy(smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
|
||||||
|
|
||||||
|
if args_opt.do_eval:
|
||||||
|
dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=False, batch_size=config.batch_size)
|
||||||
|
step_size = dataset.get_dataset_size()
|
||||||
|
|
||||||
|
if args_opt.checkpoint_path:
|
||||||
|
param_dict = load_checkpoint(args_opt.checkpoint_path)
|
||||||
|
load_param_into_net(net, param_dict)
|
||||||
|
net.set_train(False)
|
||||||
|
|
||||||
|
model = Model(net, loss_fn=loss, metrics={'acc'})
|
||||||
|
res = model.eval(dataset)
|
||||||
|
print("result:", res, "ckpt=", args_opt.checkpoint_path)
|
@ -0,0 +1,57 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
if [ $# != 3 ]
|
||||||
|
then
|
||||||
|
echo "Usage: sh run_distribute_train.sh [MINDSPORE_HCCL_CONFIG_PATH] [DATASET_PATH] [DEVICE_NUM]"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -f $1 ]
|
||||||
|
then
|
||||||
|
echo "error: DMINDSPORE_HCCL_CONFIG_PATH=$1 is not a file"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -d $2 ]
|
||||||
|
then
|
||||||
|
echo "error: DATASET_PATH=$2 is not a directory"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
BASE_PATH=$(cd "`dirname $0`" || exit; pwd)
|
||||||
|
cd $BASE_PATH/../ || exit
|
||||||
|
|
||||||
|
ulimit -u unlimited
|
||||||
|
export DEVICE_NUM=$3
|
||||||
|
export RANK_SIZE=$3
|
||||||
|
export MINDSPORE_HCCL_CONFIG_PATH=$1
|
||||||
|
|
||||||
|
for((i=0; i<${DEVICE_NUM}; i++))
|
||||||
|
do
|
||||||
|
export DEVICE_ID=$i
|
||||||
|
export RANK_ID=$i
|
||||||
|
rm -rf ./train_parallel$i
|
||||||
|
mkdir ./train_parallel$i
|
||||||
|
cp *.py ./train_parallel$i
|
||||||
|
cp -r ./src ./train_parallel$i
|
||||||
|
cd ./train_parallel$i || exit
|
||||||
|
echo "start training for rank $RANK_ID, device $DEVICE_ID"
|
||||||
|
|
||||||
|
env > env.log
|
||||||
|
python train.py --do_train=True --run_distribute=True --device_num=$DEVICE_NUM --dataset_path=$2 > log 2>&1 &
|
||||||
|
cd ..
|
||||||
|
done
|
@ -0,0 +1,67 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
if [ $# != 2 ]
|
||||||
|
then
|
||||||
|
echo "Usage: sh run_eval.sh [DATASET_PATH] [CHECKPOINT_PATH]"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
get_real_path(){
|
||||||
|
if [ "${1:0:1}" == "/" ]; then
|
||||||
|
echo "$1"
|
||||||
|
else
|
||||||
|
echo "$(realpath -m $PWD/$1)"
|
||||||
|
fi
|
||||||
|
}
|
||||||
|
|
||||||
|
PATH1=$(get_real_path $1)
|
||||||
|
PATH2=$(get_real_path $2)
|
||||||
|
|
||||||
|
|
||||||
|
if [ ! -d $PATH1 ]
|
||||||
|
then
|
||||||
|
echo "error: DATASET_PATH=$PATH1 is not a directory"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -f $PATH2 ]
|
||||||
|
then
|
||||||
|
echo "error: CHECKPOINT_PATH=$PATH2 is not a file"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
BASE_PATH=$(cd "`dirname $0`" || exit; pwd)
|
||||||
|
cd $BASE_PATH/../ || exit
|
||||||
|
|
||||||
|
ulimit -u unlimited
|
||||||
|
export DEVICE_NUM=1
|
||||||
|
export DEVICE_ID=0
|
||||||
|
export RANK_SIZE=$DEVICE_NUM
|
||||||
|
export RANK_ID=0
|
||||||
|
|
||||||
|
if [ -d "eval" ];
|
||||||
|
then
|
||||||
|
rm -rf ./eval
|
||||||
|
fi
|
||||||
|
mkdir ./eval
|
||||||
|
cp *.py ./eval
|
||||||
|
cp -r ./src ./eval
|
||||||
|
cd ./eval || exit
|
||||||
|
env > env.log
|
||||||
|
echo "start infering for device $DEVICE_ID"
|
||||||
|
python eval.py --do_eval=True --dataset_path=$PATH1 --checkpoint_path=$PATH2 &> log &
|
||||||
|
cd ..
|
@ -0,0 +1,37 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""
|
||||||
|
network config setting, will be used in train.py and eval.py
|
||||||
|
"""
|
||||||
|
from easydict import EasyDict as ed
|
||||||
|
|
||||||
|
config = ed({
|
||||||
|
"class_num": 1000,
|
||||||
|
"batch_size": 32,
|
||||||
|
"loss_scale": 128,
|
||||||
|
"momentum": 0.9,
|
||||||
|
"weight_decay": 5e-4,
|
||||||
|
"epoch_size": 45,
|
||||||
|
"buffer_size": 1000,
|
||||||
|
"image_height": 224,
|
||||||
|
"image_width": 224,
|
||||||
|
"save_checkpoint": True,
|
||||||
|
"save_checkpoint_steps": 5004,
|
||||||
|
"keep_checkpoint_max": 20,
|
||||||
|
"save_checkpoint_path": "./",
|
||||||
|
"label_smooth": 1,
|
||||||
|
"label_smooth_factor": 0.1,
|
||||||
|
"frequency": 834
|
||||||
|
})
|
@ -0,0 +1,41 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""CrossEntropy"""
|
||||||
|
import mindspore.nn as nn
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.common import dtype as mstype
|
||||||
|
from mindspore.nn.loss.loss import _Loss
|
||||||
|
from mindspore.ops import functional as F
|
||||||
|
from mindspore.ops import operations as P
|
||||||
|
|
||||||
|
|
||||||
|
class CrossEntropy(_Loss):
|
||||||
|
"""CrossEntropy"""
|
||||||
|
def __init__(self, smooth_factor=0., num_classes=1000):
|
||||||
|
super(CrossEntropy, self).__init__()
|
||||||
|
self.onehot = P.OneHot()
|
||||||
|
self.on_value = Tensor(1.0 - smooth_factor, mstype.float32)
|
||||||
|
self.off_value = Tensor(1.0 * smooth_factor / (num_classes - 1), mstype.float32)
|
||||||
|
# self.cast = P.Cast()
|
||||||
|
self.ce = nn.SoftmaxCrossEntropyWithLogits()
|
||||||
|
self.mean = P.ReduceMean(False)
|
||||||
|
|
||||||
|
def construct(self, logit, label):
|
||||||
|
# one_hot_label = self.onehot(self.cast(label, mstype.int32),
|
||||||
|
# F.shape(logit)[1], self.on_value, self.off_value)、
|
||||||
|
one_hot_label = self.onehot(label, F.shape(logit)[1], self.on_value, self.off_value)
|
||||||
|
loss = self.ce(logit, one_hot_label)
|
||||||
|
loss = self.mean(loss, 0)
|
||||||
|
return loss
|
@ -0,0 +1,125 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""Dataset help for minddata dataset"""
|
||||||
|
from mindspore._checkparam import check_bool
|
||||||
|
from mindspore.parallel._utils import _get_device_num, _get_parallel_mode
|
||||||
|
from mindspore.train.dataset_helper import _send_data
|
||||||
|
from mindspore.train._utils import _exec_datagraph, _get_types_and_shapes, \
|
||||||
|
_to_full_shapes
|
||||||
|
from mindspore.train.parallel_utils import ParallelMode
|
||||||
|
|
||||||
|
|
||||||
|
class DatasetHelper:
|
||||||
|
"""
|
||||||
|
Help function to use the Minddata dataset.
|
||||||
|
|
||||||
|
According to different context, change the iter of dataset, to use the same for loop in different context.
|
||||||
|
|
||||||
|
Note:
|
||||||
|
The iter of DatasetHelper will give one epoch data.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dataset (DataSet): The dataset.
|
||||||
|
dataset_sink_mode (bool): If true use GetNext to fetch the data, or else feed the data from host.
|
||||||
|
Default: True.
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
>>> dataset_helper = DatasetHelper(dataset)
|
||||||
|
>>> for inputs in dataset_helper:
|
||||||
|
>>> outputs = network(*inputs)
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, dataset, dataset_sink_mode=True, iter_first_order=0):
|
||||||
|
check_bool(dataset_sink_mode)
|
||||||
|
self.iter = _DatasetIterMSLoopSink(dataset, iter_first_order)
|
||||||
|
|
||||||
|
def __iter__(self):
|
||||||
|
return self.iter.__iter__()
|
||||||
|
|
||||||
|
# A temp solution for loop sink. Delete later
|
||||||
|
def types_shapes(self):
|
||||||
|
"""Get the types and shapes from dataset on current config."""
|
||||||
|
return self.iter.types_shapes()
|
||||||
|
|
||||||
|
def loop_size(self):
|
||||||
|
"""Get loop_size for every iteration."""
|
||||||
|
return self.iter.loop_size
|
||||||
|
|
||||||
|
|
||||||
|
class _DatasetIter:
|
||||||
|
"""Base iter for dataset help"""
|
||||||
|
|
||||||
|
def __init__(self, dataset):
|
||||||
|
self.loop_size = 1
|
||||||
|
if not hasattr(dataset, '__ME_INITED__'):
|
||||||
|
if not hasattr(dataset, '__loop_size__'):
|
||||||
|
self.loop_size = dataset.get_dataset_size()
|
||||||
|
else:
|
||||||
|
self.loop_size = dataset.__loop_size__
|
||||||
|
dataset.__TRANSFER_DATASET__ = _exec_datagraph(dataset, self.loop_size)
|
||||||
|
dataset.__ME_INITED__ = dataset.__TRANSFER_DATASET__.queue_name
|
||||||
|
|
||||||
|
if not hasattr(dataset, '__no_send__'):
|
||||||
|
_send_data(dataset)
|
||||||
|
else:
|
||||||
|
_send_data(dataset)
|
||||||
|
|
||||||
|
self.ind = 0
|
||||||
|
self.dataset = dataset
|
||||||
|
dataset_types, dataset_shapes = _get_types_and_shapes(dataset)
|
||||||
|
self.dataset_types, self.dataset_shapes = dataset_types, dataset_shapes
|
||||||
|
|
||||||
|
def __iter__(self):
|
||||||
|
self.ind = 0
|
||||||
|
return self
|
||||||
|
|
||||||
|
def __next__(self):
|
||||||
|
if self.ind >= self.loop_count:
|
||||||
|
raise StopIteration()
|
||||||
|
self.ind += 1
|
||||||
|
return self.op()
|
||||||
|
|
||||||
|
def types_shapes(self):
|
||||||
|
return self.dataset_types, self.dataset_shapes
|
||||||
|
|
||||||
|
def get_loop_count(self, dataset):
|
||||||
|
loop_count = 1
|
||||||
|
if hasattr(dataset, '__loop_size__'):
|
||||||
|
loop_size = dataset.__loop_size__
|
||||||
|
if dataset.get_dataset_size() % loop_size != 0:
|
||||||
|
raise ValueError(f'Dataset size {dataset.get_dataset_size()} and '
|
||||||
|
f'loop_size {loop_size} are not matched.')
|
||||||
|
loop_count = int(dataset.get_dataset_size() / loop_size)
|
||||||
|
return loop_count
|
||||||
|
|
||||||
|
|
||||||
|
class _DatasetIterMSLoopSink(_DatasetIter):
|
||||||
|
"""Iter for context (device_target=Ascend)"""
|
||||||
|
|
||||||
|
def __init__(self, dataset, iter_first_order):
|
||||||
|
super(_DatasetIterMSLoopSink, self).__init__(dataset)
|
||||||
|
loop_size = dataset.__loop_size__ + iter_first_order
|
||||||
|
self.loop_count = int(dataset.get_dataset_size() / loop_size) * 2
|
||||||
|
# for self._parallel_mode equal to semi_auto_parallel or auto_parallel, use a complete tensor to
|
||||||
|
# compile, and slice tensor to run. The batch dimension of tensors for compile is device_number
|
||||||
|
# times the batch dimension of tensors for run. Now only support LoopSink.
|
||||||
|
if _get_parallel_mode() in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL):
|
||||||
|
device_num = _get_device_num()
|
||||||
|
self.dataset_shapes = _to_full_shapes(self.dataset_shapes, device_num)
|
||||||
|
|
||||||
|
def op():
|
||||||
|
return tuple()
|
||||||
|
|
||||||
|
self.op = op
|
@ -0,0 +1,80 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""
|
||||||
|
create train or eval dataset.
|
||||||
|
"""
|
||||||
|
import os
|
||||||
|
|
||||||
|
import mindspore.common.dtype as mstype
|
||||||
|
import mindspore.dataset.engine as de
|
||||||
|
import mindspore.dataset.transforms.c_transforms as C2
|
||||||
|
import mindspore.dataset.transforms.vision.c_transforms as V_C
|
||||||
|
|
||||||
|
|
||||||
|
def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32):
|
||||||
|
"""
|
||||||
|
create a train or eval dataset
|
||||||
|
Args:
|
||||||
|
dataset_path(string): the path of dataset.
|
||||||
|
do_train(bool): whether dataset is used for train or eval.
|
||||||
|
repeat_num(int): the repeat times of dataset. Default: 1
|
||||||
|
batch_size(int): the batch size of dataset. Default: 32
|
||||||
|
Returns:
|
||||||
|
dataset
|
||||||
|
"""
|
||||||
|
|
||||||
|
device_num = int(os.getenv("RANK_SIZE"))
|
||||||
|
rank_id = int(os.getenv("RANK_ID"))
|
||||||
|
|
||||||
|
if device_num == 1:
|
||||||
|
ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=False)
|
||||||
|
else:
|
||||||
|
ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True,
|
||||||
|
num_shards=device_num, shard_id=rank_id)
|
||||||
|
|
||||||
|
image_size = 224
|
||||||
|
mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
|
||||||
|
std = [0.229 * 255, 0.224 * 255, 0.225 * 255]
|
||||||
|
if do_train:
|
||||||
|
transform_img = [
|
||||||
|
V_C.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)),
|
||||||
|
V_C.RandomHorizontalFlip(prob=0.5),
|
||||||
|
V_C.Normalize(mean=mean, std=std),
|
||||||
|
V_C.HWC2CHW()
|
||||||
|
]
|
||||||
|
else:
|
||||||
|
transform_img = [
|
||||||
|
V_C.Decode(),
|
||||||
|
V_C.Resize((256, 256)),
|
||||||
|
V_C.CenterCrop(image_size),
|
||||||
|
V_C.Normalize(mean=mean, std=std),
|
||||||
|
V_C.HWC2CHW()
|
||||||
|
]
|
||||||
|
# type_cast_op = C2.TypeCast(mstype.float16)
|
||||||
|
type_cast_op = C2.TypeCast(mstype.int32)
|
||||||
|
|
||||||
|
ds = ds.map(input_columns="image", operations=transform_img, num_parallel_workers=8)
|
||||||
|
ds = ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=8)
|
||||||
|
|
||||||
|
# apply shuffle operations
|
||||||
|
# ds = ds.shuffle(buffer_size=config.buffer_size)
|
||||||
|
|
||||||
|
# apply batch operations
|
||||||
|
ds = ds.batch(batch_size, drop_remainder=True)
|
||||||
|
|
||||||
|
# apply dataset repeat operation
|
||||||
|
ds = ds.repeat(repeat_num)
|
||||||
|
|
||||||
|
return ds
|
@ -0,0 +1,183 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""grad_reducer_thor"""
|
||||||
|
import mindspore.common.dtype as mstype
|
||||||
|
from mindspore.communication.management import GlobalComm, get_group_size
|
||||||
|
from mindspore.nn.cell import Cell
|
||||||
|
from mindspore.ops import functional as F, composite as C, operations as P
|
||||||
|
from mindspore.ops.operations.comm_ops import AllReduce, ReduceOp
|
||||||
|
|
||||||
|
reduce_opt = C.MultitypeFuncGraph("reduce_opt")
|
||||||
|
|
||||||
|
_all_reduce_A = AllReduce()
|
||||||
|
|
||||||
|
|
||||||
|
def _init_optimizer_allreduce(group):
|
||||||
|
global _all_reduce_A
|
||||||
|
_all_reduce_A = AllReduce(ReduceOp.SUM, GlobalComm.WORLD_COMM_GROUP)
|
||||||
|
_all_reduce_A.add_prim_attr('fusion', group)
|
||||||
|
|
||||||
|
|
||||||
|
@reduce_opt.register("Function", "Number", "Tensor")
|
||||||
|
def _tensors_allreduce_mean(mul, degree, grad):
|
||||||
|
degree = F.scalar_cast(degree, F.dtype(grad))
|
||||||
|
grad = _all_reduce_A(grad)
|
||||||
|
cast_op = P.Cast()
|
||||||
|
return mul(grad, cast_op(F.scalar_to_array(1.0 / degree), F.dtype(grad)))
|
||||||
|
|
||||||
|
|
||||||
|
@reduce_opt.register("Bool", "Tensor")
|
||||||
|
def _tensors_allreduce(allreduce_filter, grad):
|
||||||
|
if allreduce_filter:
|
||||||
|
return _all_reduce_A(grad)
|
||||||
|
return grad
|
||||||
|
|
||||||
|
|
||||||
|
_get_datatype = C.MultitypeFuncGraph("_get_datatype")
|
||||||
|
|
||||||
|
|
||||||
|
@_get_datatype.register("Tensor")
|
||||||
|
def _tensors_get_datatype(grad):
|
||||||
|
"""
|
||||||
|
Acquire gradient datatype.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
grad (Tensor): The gradient tensor before operation.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
mstype, the datatype of gradient.
|
||||||
|
"""
|
||||||
|
return F.dtype(grad)
|
||||||
|
|
||||||
|
|
||||||
|
_cast_datatype = C.MultitypeFuncGraph("_cast_datatype")
|
||||||
|
|
||||||
|
|
||||||
|
@_cast_datatype.register("TypeType", "Tensor")
|
||||||
|
def _tensors_cast_datatype(datatype, grad):
|
||||||
|
"""
|
||||||
|
Cast gradient to datatype.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
datatype (mstype): the destination datatype of gradient.
|
||||||
|
grad (Tensor): The gradient tensor before operation.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tensor, the gradient tensor after operation.
|
||||||
|
"""
|
||||||
|
return F.cast(grad, datatype)
|
||||||
|
|
||||||
|
|
||||||
|
class DistributedGradReducerThor(Cell):
|
||||||
|
"""
|
||||||
|
A distributed optimizer.
|
||||||
|
|
||||||
|
Constructs a gradient reducer Cell, which applies communication and average operations on
|
||||||
|
single-process gradient values.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
parameters (list): the parameters to be updated.
|
||||||
|
mean (bool): When mean is true, the mean coefficient (degree) would apply on gradients. Default: False.
|
||||||
|
degree (int): The mean coefficient. Usually it equals to device number. Default: None.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: If degree is not a int or less than 0.
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
>>> from mindspore.communication import init, get_group_size
|
||||||
|
>>> from mindspore.ops import composite as C
|
||||||
|
>>> from mindspore.ops import operations as P
|
||||||
|
>>> from mindspore.ops import functional as F
|
||||||
|
>>> from mindspore import context
|
||||||
|
>>> from mindspore import nn
|
||||||
|
>>> from mindspore import ParallelMode, ParameterTuple
|
||||||
|
>>>
|
||||||
|
>>> device_id = int(os.environ["DEVICE_ID"])
|
||||||
|
>>> context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True,
|
||||||
|
>>> device_id=int(device_id), enable_hccl=True)
|
||||||
|
>>> init()
|
||||||
|
>>> context.reset_auto_parallel_context()
|
||||||
|
>>> context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL)
|
||||||
|
>>>
|
||||||
|
>>>
|
||||||
|
>>> class TrainingWrapper(nn.Cell):
|
||||||
|
>>> def __init__(self, network, optimizer, sens=1.0):
|
||||||
|
>>> super(TrainingWrapper, self).__init__(auto_prefix=False)
|
||||||
|
>>> self.network = network
|
||||||
|
>>> self.network.add_flags(defer_inline=True)
|
||||||
|
>>> self.weights = ParameterTuple(network.trainable_params())
|
||||||
|
>>> self.optimizer = optimizer
|
||||||
|
>>> self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True)
|
||||||
|
>>> self.sens = sens
|
||||||
|
>>> self.reducer_flag = False
|
||||||
|
>>> self.grad_reducer = None
|
||||||
|
>>> self.parallel_mode = context.get_auto_parallel_context("parallel_mode")
|
||||||
|
>>> if self.parallel_mode in [ParallelMode.DATA_PARALLEL,
|
||||||
|
>>> ParallelMode.HYBRID_PARALLEL]:
|
||||||
|
>>> self.reducer_flag = True
|
||||||
|
>>> if self.reducer_flag:
|
||||||
|
>>> mean = context.get_auto_parallel_context("mirror_mean")
|
||||||
|
>>> if mean.get_device_num_is_set():
|
||||||
|
>>> degree = context.get_auto_parallel_context("device_num")
|
||||||
|
>>> else:
|
||||||
|
>>> degree = get_group_size()
|
||||||
|
>>> self.grad_reducer = nn.DistributedGradReducer(optimizer.parameters, mean, degree)
|
||||||
|
>>>
|
||||||
|
>>> def construct(self, *args):
|
||||||
|
>>> weights = self.weights
|
||||||
|
>>> loss = self.network(*args)
|
||||||
|
>>> sens = P.Fill()(P.DType()(loss), P.Shape()(loss), self.sens)
|
||||||
|
>>> grads = self.grad(self.network, weights)(*args, sens)
|
||||||
|
>>> if self.reducer_flag:
|
||||||
|
>>> # apply grad reducer on grads
|
||||||
|
>>> grads = self.grad_reducer(grads)
|
||||||
|
>>> return F.depend(loss, self.optimizer(grads))
|
||||||
|
>>>
|
||||||
|
>>> network = Net()
|
||||||
|
>>> optimizer = nn.Momentum(network.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||||
|
>>> train_cell = TrainingWrapper(network, optimizer)
|
||||||
|
>>> inputs = Tensor(np.ones([16, 16]).astype(np.float32))
|
||||||
|
>>> label = Tensor(np.zeros([16, 16]).astype(np.float32))
|
||||||
|
>>> grads = train_cell(inputs, label)
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, parameters, group, mean=True, degree=None):
|
||||||
|
super(DistributedGradReducerThor, self).__init__(auto_prefix=False)
|
||||||
|
self.hyper_map = C.HyperMap()
|
||||||
|
self.mul = P.Mul()
|
||||||
|
if degree is None:
|
||||||
|
self.degree = get_group_size()
|
||||||
|
else:
|
||||||
|
if not isinstance(degree, int) or degree <= 0:
|
||||||
|
raise ValueError("Parameter 'degree' in DistributedGradReducer should large than 0 and be int")
|
||||||
|
self.degree = degree
|
||||||
|
self.mean = mean
|
||||||
|
self.allreduce_filter = tuple(x.layerwise_parallel is False for x in parameters)
|
||||||
|
_init_optimizer_allreduce(group)
|
||||||
|
|
||||||
|
def construct(self, grads):
|
||||||
|
# In some circumstances, the data precision of grads could be mixed with float16 and float32. Thus, the
|
||||||
|
# result of AllReduce is unreliable. To solve the problem, grads should be cast to float32 before AllReduce,
|
||||||
|
# and cast back after the operation.
|
||||||
|
datatypes = self.hyper_map(F.partial(_get_datatype), grads)
|
||||||
|
grads = self.hyper_map(F.partial(_cast_datatype, mstype.float32), grads)
|
||||||
|
|
||||||
|
if self.mean:
|
||||||
|
new_grad = self.hyper_map(F.partial(reduce_opt, self.mul, self.degree), grads)
|
||||||
|
else:
|
||||||
|
new_grad = self.hyper_map(F.partial(reduce_opt), self.allreduce_filter, grads)
|
||||||
|
|
||||||
|
new_grad = self.hyper_map(F.partial(_cast_datatype), datatypes, new_grad)
|
||||||
|
return new_grad
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,199 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""momentum"""
|
||||||
|
import mindspore.common.dtype as mstype
|
||||||
|
from mindspore.common.initializer import initializer
|
||||||
|
from mindspore.common.parameter import Parameter
|
||||||
|
from mindspore.common.parameter import ParameterTuple
|
||||||
|
from mindspore.common.tensor import Tensor
|
||||||
|
from mindspore.nn.optim.optimizer import Optimizer
|
||||||
|
from mindspore.ops import functional as F, composite as C, operations as P
|
||||||
|
from mindspore.parallel._utils import _get_device_num, _get_mirror_mean
|
||||||
|
from src.grad_reducer_thor import DistributedGradReducerThor
|
||||||
|
|
||||||
|
momentum_opt = C.MultitypeFuncGraph("momentum_opt")
|
||||||
|
|
||||||
|
|
||||||
|
@momentum_opt.register("Function", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor")
|
||||||
|
def _tensor_run_opt_ext(opt, learning_rate, momentum, gradient, weight, moment):
|
||||||
|
"""Apply momentum optimizer to the weight parameter using Tensor."""
|
||||||
|
success = True
|
||||||
|
success = F.depend(success, opt(weight, moment, learning_rate, gradient, momentum))
|
||||||
|
return success
|
||||||
|
|
||||||
|
|
||||||
|
op_add = P.AddN()
|
||||||
|
apply_decay = C.MultitypeFuncGraph("apply_decay")
|
||||||
|
|
||||||
|
|
||||||
|
@apply_decay.register("Number", "Bool", "Tensor", "Tensor")
|
||||||
|
def _tensor_apply_decay(weight_decay, if_apply, weight, gradient):
|
||||||
|
"""Get grad with weight_decay."""
|
||||||
|
if if_apply:
|
||||||
|
return op_add((weight * weight_decay, gradient))
|
||||||
|
return gradient
|
||||||
|
|
||||||
|
|
||||||
|
class THOR(Optimizer):
|
||||||
|
"""THOR"""
|
||||||
|
def __init__(self, params, learning_rate, momentum, matrix_A, matrix_G, A_inv_max, G_inv_max, weight_decay=0.0,
|
||||||
|
loss_scale=1.0,
|
||||||
|
decay_filter=lambda x: x.name not in []):
|
||||||
|
super(THOR, self).__init__(learning_rate, params, weight_decay, loss_scale)
|
||||||
|
if isinstance(momentum, float) and momentum < 0.0:
|
||||||
|
raise ValueError("momentum should be at least 0.0, but got momentum {}".format(momentum))
|
||||||
|
self.momentum = Parameter(Tensor(momentum, mstype.float32), name="momentum")
|
||||||
|
self.params = self.parameters
|
||||||
|
self.moments = self.params.clone(prefix="moments", init='zeros')
|
||||||
|
self.hyper_map = C.HyperMap()
|
||||||
|
self.opt = P.ApplyMomentum()
|
||||||
|
self.matrix_A = ParameterTuple(matrix_A)
|
||||||
|
self.matrix_G = ParameterTuple(matrix_G)
|
||||||
|
self.A_inv_max = ParameterTuple(A_inv_max)
|
||||||
|
self.G_inv_max = ParameterTuple(G_inv_max)
|
||||||
|
self.cube_matmul_left = P.CusMatMulCubeFraczLeftCast()
|
||||||
|
self.cube_matmul_left_fc = P.CusMatMulCubeDenseLeft()
|
||||||
|
self.cube_matmul_right_fc = P.CusMatMulCubeDenseRight()
|
||||||
|
self.cube_matmul_right_mul = P.CusMatMulCubeFraczRightMul()
|
||||||
|
self.transpose = P.Transpose()
|
||||||
|
self.shape = P.Shape()
|
||||||
|
self.reshape = P.Reshape()
|
||||||
|
self.mul = P.Mul()
|
||||||
|
self.weight_idx = []
|
||||||
|
for i in range(len(self.params)):
|
||||||
|
if "conv" in self.params[i].name or "end_point" in self.params[i].name:
|
||||||
|
self.weight_idx.append(i)
|
||||||
|
self.weight_idx.append(len(self.params))
|
||||||
|
self.feature_map = [1.0 / 12544, 1.0 / 3136, 1.0 / 3136, 1.0 / 3136, 1.0 / 3136, 1.0 / 3136, 1.0 / 3136,
|
||||||
|
1.0 / 3136, 1.0 / 3136, 1.0 / 3136, 1.0 / 3136, 1.0 / 3136,
|
||||||
|
1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784,
|
||||||
|
1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784,
|
||||||
|
1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196,
|
||||||
|
1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196,
|
||||||
|
1.0 / 196, 1.0 / 196, 1.0 / 196,
|
||||||
|
1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0 / 49,
|
||||||
|
1.0]
|
||||||
|
mean = _get_mirror_mean()
|
||||||
|
degree = _get_device_num()
|
||||||
|
self.grad_reducer_Amax = DistributedGradReducerThor(self.parameters, 2, mean, degree)
|
||||||
|
self.grad_reducer_Gmax = DistributedGradReducerThor(self.parameters, 5, mean, degree)
|
||||||
|
self.grad_reducer_A = DistributedGradReducerThor(self.parameters, 3, mean, degree)
|
||||||
|
self.grad_reducer_G = DistributedGradReducerThor(self.parameters, 4, mean, degree)
|
||||||
|
self.matrix_A_inv = ()
|
||||||
|
self.matrix_G_inv = ()
|
||||||
|
self.matrix_max_inv = ()
|
||||||
|
|
||||||
|
for i in range(54):
|
||||||
|
self.matrix_max_inv = self.matrix_max_inv + (
|
||||||
|
Parameter(initializer(1, [1], mstype.float32), name="matrix_max" + str(i), requires_grad=False),)
|
||||||
|
self.log = P.Log()
|
||||||
|
self.exp = P.Exp()
|
||||||
|
self.sqrt = P.Sqrt()
|
||||||
|
self.matrix_max_inv = ParameterTuple(self.matrix_max_inv)
|
||||||
|
self.assign = P.Assign()
|
||||||
|
self.cast = P.Cast()
|
||||||
|
self.thor = True
|
||||||
|
self.weight_decay = weight_decay * loss_scale
|
||||||
|
self.decay_flags = tuple(decay_filter(x) for x in self.parameters)
|
||||||
|
|
||||||
|
def construct(self, gradients):
|
||||||
|
params = self.params
|
||||||
|
moments = self.moments
|
||||||
|
if self.thor:
|
||||||
|
matrix_A_allreduce = ()
|
||||||
|
matrix_G_allreduce = ()
|
||||||
|
matrix_A_max_allreduce = ()
|
||||||
|
matrix_G_max_allreduce = ()
|
||||||
|
for i in range(54):
|
||||||
|
g = gradients[i * 3]
|
||||||
|
matrix_A = self.matrix_A[i]
|
||||||
|
matrix_G = self.matrix_G[i]
|
||||||
|
A_max = self.A_inv_max[i]
|
||||||
|
G_max = self.G_inv_max[i]
|
||||||
|
matrix_A = F.depend(matrix_A, g)
|
||||||
|
matrix_G = F.depend(matrix_G, g)
|
||||||
|
A_max = F.depend(A_max, g)
|
||||||
|
G_max = F.depend(G_max, g)
|
||||||
|
matrix_A_allreduce = matrix_A_allreduce + (matrix_A,)
|
||||||
|
matrix_G_allreduce = matrix_G_allreduce + (matrix_G,)
|
||||||
|
matrix_A_max_allreduce = matrix_A_max_allreduce + (A_max,)
|
||||||
|
matrix_G_max_allreduce = matrix_G_max_allreduce + (G_max,)
|
||||||
|
matrix_A_allreduce = self.grad_reducer_A(matrix_A_allreduce)
|
||||||
|
matrix_G_allreduce = self.grad_reducer_G(matrix_G_allreduce)
|
||||||
|
matrix_A_max_allreduce = self.grad_reducer_Amax(matrix_A_max_allreduce)
|
||||||
|
matrix_G_max_allreduce = self.grad_reducer_Gmax(matrix_G_max_allreduce)
|
||||||
|
new_grads = ()
|
||||||
|
for i in range(54):
|
||||||
|
g = gradients[i * 3]
|
||||||
|
temp_a = matrix_A_allreduce[i]
|
||||||
|
temp_g = matrix_G_allreduce[i]
|
||||||
|
temp_a = self.cast(temp_a, mstype.float32)
|
||||||
|
temp_g = self.cast(temp_g, mstype.float32)
|
||||||
|
matrix_A_inv_max = self.log(matrix_A_max_allreduce[i])
|
||||||
|
matrix_A_inv_max = self.mul(matrix_A_inv_max, -1)
|
||||||
|
matrix_A_inv_max = self.exp(matrix_A_inv_max)
|
||||||
|
temp_a = self.mul(temp_a, matrix_A_inv_max)
|
||||||
|
matrix_G_inv_max = self.log(matrix_G_max_allreduce[i])
|
||||||
|
matrix_G_inv_max = self.mul(matrix_G_inv_max, -1)
|
||||||
|
matrix_G_inv_max = self.exp(matrix_G_inv_max)
|
||||||
|
temp_g = self.mul(temp_g, matrix_G_inv_max)
|
||||||
|
temp_max = self.mul(matrix_A_max_allreduce[i], matrix_G_max_allreduce[i])
|
||||||
|
temp_max = self.mul(temp_max, self.feature_map[i])
|
||||||
|
temp_a = self.cast(temp_a, mstype.float16)
|
||||||
|
temp_g = self.cast(temp_g, mstype.float16)
|
||||||
|
if i == 53:
|
||||||
|
g = self.cube_matmul_left_fc(temp_g, g)
|
||||||
|
g = self.cube_matmul_right_fc(g, temp_a, temp_max)
|
||||||
|
else:
|
||||||
|
g = self.cube_matmul_left(temp_g, g)
|
||||||
|
g = self.cube_matmul_right_mul(g, temp_a, temp_max)
|
||||||
|
fake_A = self.assign(self.matrix_A[i], temp_a)
|
||||||
|
fake_G = self.assign(self.matrix_G[i], temp_g)
|
||||||
|
fake_max = self.assign(self.matrix_max_inv[i], temp_max)
|
||||||
|
g = F.depend(g, fake_A)
|
||||||
|
g = F.depend(g, fake_G)
|
||||||
|
g = F.depend(g, fake_max)
|
||||||
|
if i == 53:
|
||||||
|
new_grads = new_grads + (g,)
|
||||||
|
else:
|
||||||
|
new_grads = new_grads + (g, gradients[i * 3 + 1], gradients[i * 3 + 2])
|
||||||
|
gradients = new_grads
|
||||||
|
else:
|
||||||
|
new_grads = ()
|
||||||
|
for i in range(54):
|
||||||
|
g = gradients[i * 3]
|
||||||
|
matrix_A = self.matrix_A[i]
|
||||||
|
matrix_G = self.matrix_G[i]
|
||||||
|
matrix_max = self.matrix_max_inv[i]
|
||||||
|
matrix_A = F.depend(matrix_A, g)
|
||||||
|
matrix_G = F.depend(matrix_G, g)
|
||||||
|
matrix_max = F.depend(matrix_max, g)
|
||||||
|
if i == 53:
|
||||||
|
g = self.cube_matmul_left_fc(matrix_G, g)
|
||||||
|
g = self.cube_matmul_right_fc(g, matrix_A, matrix_max)
|
||||||
|
new_grads = new_grads + (g,)
|
||||||
|
else:
|
||||||
|
g = self.cube_matmul_left(matrix_G, g)
|
||||||
|
g = self.cube_matmul_right_mul(g, matrix_A, matrix_max)
|
||||||
|
new_grads = new_grads + (g, gradients[i * 3 + 1], gradients[i * 3 + 2])
|
||||||
|
gradients = new_grads
|
||||||
|
|
||||||
|
if self.weight_decay > 0:
|
||||||
|
gradients = self.hyper_map(F.partial(apply_decay, self.weight_decay), self.decay_flags,
|
||||||
|
params, gradients)
|
||||||
|
gradients = self.scale_grad(gradients)
|
||||||
|
lr = self.get_lr()
|
||||||
|
success = self.hyper_map(F.partial(momentum_opt, self.opt, lr, self.momentum), gradients, params, moments)
|
||||||
|
return success
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,132 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""train_imagenet."""
|
||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
import random
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore import context
|
||||||
|
from mindspore.communication.management import init
|
||||||
|
from mindspore.parallel._auto_parallel_context import auto_parallel_context
|
||||||
|
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
|
||||||
|
from mindspore.train.loss_scale_manager import FixedLossScaleManager
|
||||||
|
from mindspore.train.model import ParallelMode
|
||||||
|
from src.model_thor import Model
|
||||||
|
from src.resnet_thor import resnet50
|
||||||
|
from src.thor import THOR
|
||||||
|
from src.config import config
|
||||||
|
from src.crossentropy import CrossEntropy
|
||||||
|
from src.dataset_imagenet import create_dataset
|
||||||
|
|
||||||
|
random.seed(1)
|
||||||
|
np.random.seed(1)
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser(description='Image classification')
|
||||||
|
parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
|
||||||
|
parser.add_argument('--device_num', type=int, default=1, help='Device num.')
|
||||||
|
parser.add_argument('--do_train', type=bool, default=True, help='Do train or not.')
|
||||||
|
parser.add_argument('--do_eval', type=bool, default=False, help='Do eval or not.')
|
||||||
|
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
|
||||||
|
|
||||||
|
args_opt = parser.parse_args()
|
||||||
|
device_id = int(os.getenv('DEVICE_ID'))
|
||||||
|
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, device_id=device_id)
|
||||||
|
|
||||||
|
|
||||||
|
def get_model_lr(global_step, lr_init, decay, total_epochs, steps_per_epoch):
|
||||||
|
"""get_model_lr"""
|
||||||
|
lr_each_step = []
|
||||||
|
total_steps = steps_per_epoch * total_epochs
|
||||||
|
for i in range(total_steps):
|
||||||
|
epoch = (i + 1) / steps_per_epoch
|
||||||
|
base = (1.0 - float(epoch) / total_epochs) ** decay
|
||||||
|
lr_local = lr_init * base
|
||||||
|
if epoch >= 39:
|
||||||
|
lr_local = lr_local * 0.5
|
||||||
|
if epoch >= 40:
|
||||||
|
lr_local = lr_local * 0.5
|
||||||
|
lr_each_step.append(lr_local)
|
||||||
|
current_step = global_step
|
||||||
|
lr_each_step = np.array(lr_each_step).astype(np.float32)
|
||||||
|
learning_rate = lr_each_step[current_step:]
|
||||||
|
return learning_rate
|
||||||
|
|
||||||
|
|
||||||
|
def get_model_damping(global_step, damping_init, decay_rate, total_epochs, steps_per_epoch):
|
||||||
|
"""get_model_damping"""
|
||||||
|
damping_each_step = []
|
||||||
|
total_steps = steps_per_epoch * total_epochs
|
||||||
|
for step in range(total_steps):
|
||||||
|
epoch = (step + 1) / steps_per_epoch
|
||||||
|
damping_here = damping_init * (decay_rate ** (epoch / 10))
|
||||||
|
damping_each_step.append(damping_here)
|
||||||
|
|
||||||
|
current_step = global_step
|
||||||
|
damping_each_step = np.array(damping_each_step).astype(np.float32)
|
||||||
|
damping_now = damping_each_step[current_step:]
|
||||||
|
return damping_now
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
if not args_opt.do_eval and args_opt.run_distribute:
|
||||||
|
context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
|
||||||
|
mirror_mean=True, parameter_broadcast=True)
|
||||||
|
auto_parallel_context().set_all_reduce_fusion_split_indices([107], "hccl_world_groupsum1")
|
||||||
|
auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum2")
|
||||||
|
auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum3")
|
||||||
|
auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum4")
|
||||||
|
auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum5")
|
||||||
|
|
||||||
|
init()
|
||||||
|
|
||||||
|
epoch_size = config.epoch_size
|
||||||
|
damping = get_model_damping(0, 0.03, 0.87, 50, 5004)
|
||||||
|
net = resnet50(class_num=config.class_num, damping=damping, loss_scale=config.loss_scale,
|
||||||
|
frequency=config.frequency)
|
||||||
|
|
||||||
|
if not config.label_smooth:
|
||||||
|
config.label_smooth_factor = 0.0
|
||||||
|
loss = CrossEntropy(smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
|
||||||
|
if args_opt.do_train:
|
||||||
|
dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True,
|
||||||
|
repeat_num=epoch_size, batch_size=config.batch_size)
|
||||||
|
step_size = dataset.get_dataset_size()
|
||||||
|
|
||||||
|
loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
|
||||||
|
lr = Tensor(get_model_lr(0, 0.045, 6, 70, 5004))
|
||||||
|
opt = THOR(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum,
|
||||||
|
filter(lambda x: 'matrix_A' in x.name, net.get_parameters()),
|
||||||
|
filter(lambda x: 'matrix_G' in x.name, net.get_parameters()),
|
||||||
|
filter(lambda x: 'A_inv_max' in x.name, net.get_parameters()),
|
||||||
|
filter(lambda x: 'G_inv_max' in x.name, net.get_parameters()),
|
||||||
|
config.weight_decay, config.loss_scale)
|
||||||
|
|
||||||
|
model = Model(net, loss_fn=loss, optimizer=opt, amp_level='O2', loss_scale_manager=loss_scale,
|
||||||
|
keep_batchnorm_fp32=False, metrics={'acc'}, frequency=config.frequency)
|
||||||
|
|
||||||
|
time_cb = TimeMonitor(data_size=step_size)
|
||||||
|
loss_cb = LossMonitor()
|
||||||
|
cb = [time_cb, loss_cb]
|
||||||
|
if config.save_checkpoint:
|
||||||
|
config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_steps,
|
||||||
|
keep_checkpoint_max=config.keep_checkpoint_max)
|
||||||
|
ckpt_cb = ModelCheckpoint(prefix="resnet", directory=config.save_checkpoint_path, config=config_ck)
|
||||||
|
cb += [ckpt_cb]
|
||||||
|
|
||||||
|
model.train(epoch_size, dataset, callbacks=cb)
|
Loading…
Reference in new issue