parent
6dd5d2effd
commit
677127ef5e
@ -0,0 +1,73 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
import mindspore.context as context
|
||||||
|
import mindspore.nn as nn
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.common.api import ms_function
|
||||||
|
from mindspore.ops.operations import _grad_ops as G
|
||||||
|
from mindspore.ops.composite import GradOperation
|
||||||
|
|
||||||
|
|
||||||
|
class NetAcosGrad(nn.Cell):
|
||||||
|
def __init__(self):
|
||||||
|
super(NetAcosGrad, self).__init__()
|
||||||
|
self.acos_grad = G.ACosGrad()
|
||||||
|
|
||||||
|
@ms_function
|
||||||
|
def construct(self, x, dy):
|
||||||
|
return self.acos_grad(x, dy)
|
||||||
|
|
||||||
|
|
||||||
|
class Grad(nn.Cell):
|
||||||
|
def __init__(self, network):
|
||||||
|
super(Grad, self).__init__()
|
||||||
|
self.grad = GradOperation(get_all=True, sens_param=True)
|
||||||
|
self.network = network
|
||||||
|
|
||||||
|
@ms_function
|
||||||
|
def construct(self, x, grad, dout):
|
||||||
|
return self.grad(self.network)(x, grad, dout)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_x86_gpu_training
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
@pytest.mark.parametrize("fp_type, error_magnitude, mode", [
|
||||||
|
(np.float16, 1.0e-3, context.PYNATIVE_MODE),
|
||||||
|
(np.float32, 1.0e-6, context.PYNATIVE_MODE),
|
||||||
|
(np.float16, 1.0e-3, context.GRAPH_MODE),
|
||||||
|
(np.float32, 1.0e-6, context.GRAPH_MODE)
|
||||||
|
])
|
||||||
|
def test_acos_grad_grad(fp_type, error_magnitude, mode):
|
||||||
|
x = Tensor(np.array([0, -0.25, 0.5, 0.3]).astype(fp_type))
|
||||||
|
grad = Tensor(np.array([0, -0.25, 0.5, 0.3]).astype(fp_type))
|
||||||
|
dout = Tensor(np.array([2, 2, 2, 2]).astype(fp_type))
|
||||||
|
|
||||||
|
expect_ddy = np.array([-2, -2.0655911, -2.3094011, -2.0965697]).astype(fp_type)
|
||||||
|
expect_d2x = np.array([0, -0.1377061, -0.7698004, -0.2073530]).astype(fp_type)
|
||||||
|
|
||||||
|
error = np.ones(4) * error_magnitude
|
||||||
|
|
||||||
|
context.set_context(mode=mode, device_target="GPU")
|
||||||
|
acos_grad_grad = Grad(NetAcosGrad())
|
||||||
|
d2x, ddy = acos_grad_grad(x, grad, dout)
|
||||||
|
diff0 = ddy.asnumpy() - expect_ddy
|
||||||
|
diff1 = d2x.asnumpy() - expect_d2x
|
||||||
|
assert np.all(abs(diff0) < error)
|
||||||
|
assert np.all(abs(diff1) < error)
|
@ -0,0 +1,73 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
import mindspore.context as context
|
||||||
|
import mindspore.nn as nn
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.common.api import ms_function
|
||||||
|
from mindspore.ops.operations import _grad_ops as G
|
||||||
|
from mindspore.ops.composite import GradOperation
|
||||||
|
|
||||||
|
|
||||||
|
class NetAsinGrad(nn.Cell):
|
||||||
|
def __init__(self):
|
||||||
|
super(NetAsinGrad, self).__init__()
|
||||||
|
self.asin_grad = G.AsinGrad()
|
||||||
|
|
||||||
|
@ms_function
|
||||||
|
def construct(self, x, dy):
|
||||||
|
return self.asin_grad(x, dy)
|
||||||
|
|
||||||
|
|
||||||
|
class Grad(nn.Cell):
|
||||||
|
def __init__(self, network):
|
||||||
|
super(Grad, self).__init__()
|
||||||
|
self.grad = GradOperation(get_all=True, sens_param=True)
|
||||||
|
self.network = network
|
||||||
|
|
||||||
|
@ms_function
|
||||||
|
def construct(self, x, grad, dout):
|
||||||
|
return self.grad(self.network)(x, grad, dout)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_x86_gpu_training
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
@pytest.mark.parametrize("fp_type, error_magnitude, mode", [
|
||||||
|
(np.float16, 1.0e-3, context.PYNATIVE_MODE),
|
||||||
|
(np.float32, 1.0e-6, context.PYNATIVE_MODE),
|
||||||
|
(np.float16, 1.0e-3, context.GRAPH_MODE),
|
||||||
|
(np.float32, 1.0e-6, context.GRAPH_MODE)
|
||||||
|
])
|
||||||
|
def test_asin_grad_grad(fp_type, error_magnitude, mode):
|
||||||
|
x = Tensor(np.array([0, -0.25, 0.5, 0.3]).astype(fp_type))
|
||||||
|
grad = Tensor(np.array([0, -0.25, 0.5, 0.3]).astype(fp_type))
|
||||||
|
dout = Tensor(np.array([2, 2, 2, 2]).astype(fp_type))
|
||||||
|
|
||||||
|
expect_ddy = np.array([2, 2.0655911, 2.3094011, 2.0965697]).astype(fp_type)
|
||||||
|
expect_d2x = np.array([0, 0.1377061, 0.7698004, 0.2073530]).astype(fp_type)
|
||||||
|
|
||||||
|
error = np.ones(4) * error_magnitude
|
||||||
|
|
||||||
|
context.set_context(mode=mode, device_target="GPU")
|
||||||
|
asin_grad_grad = Grad(NetAsinGrad())
|
||||||
|
d2x, ddy = asin_grad_grad(x, grad, dout)
|
||||||
|
diff0 = ddy.asnumpy() - expect_ddy
|
||||||
|
diff1 = d2x.asnumpy() - expect_d2x
|
||||||
|
assert np.all(abs(diff0) < error)
|
||||||
|
assert np.all(abs(diff1) < error)
|
Loading…
Reference in new issue