|
|
@ -105,10 +105,11 @@ class Model:
|
|
|
|
>>> return out
|
|
|
|
>>> return out
|
|
|
|
>>>
|
|
|
|
>>>
|
|
|
|
>>> net = Net()
|
|
|
|
>>> net = Net()
|
|
|
|
>>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
|
|
|
>>> loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
|
|
|
|
>>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
|
|
|
>>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
|
|
|
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None)
|
|
|
|
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None)
|
|
|
|
>>> dataset = get_dataset()
|
|
|
|
>>> # For details about how to build the dataset, please refer to the tutorial document on the official website.
|
|
|
|
|
|
|
|
>>> dataset = create_custom_dataset()
|
|
|
|
>>> model.train(2, dataset)
|
|
|
|
>>> model.train(2, dataset)
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
@ -514,9 +515,6 @@ class Model:
|
|
|
|
When setting pynative mode or CPU, the training process will be performed with dataset not sink.
|
|
|
|
When setting pynative mode or CPU, the training process will be performed with dataset not sink.
|
|
|
|
|
|
|
|
|
|
|
|
Note:
|
|
|
|
Note:
|
|
|
|
If dataset_sink_mode is True, epoch of training should be equal to the count of repeat
|
|
|
|
|
|
|
|
operation in dataset processing. Otherwise, errors could occur since the amount of data
|
|
|
|
|
|
|
|
is not equal to the required amount of training .
|
|
|
|
|
|
|
|
If dataset_sink_mode is True, data will be sent to device. If device is Ascend, features
|
|
|
|
If dataset_sink_mode is True, data will be sent to device. If device is Ascend, features
|
|
|
|
of data will be transferred one by one. The limitation of data transmission per time is 256M.
|
|
|
|
of data will be transferred one by one. The limitation of data transmission per time is 256M.
|
|
|
|
If sink_size > 0, each epoch the dataset can be traversed unlimited times until you get sink_size
|
|
|
|
If sink_size > 0, each epoch the dataset can be traversed unlimited times until you get sink_size
|
|
|
@ -541,7 +539,7 @@ class Model:
|
|
|
|
If dataset_sink_mode is False, set sink_size as invalid. Default: -1.
|
|
|
|
If dataset_sink_mode is False, set sink_size as invalid. Default: -1.
|
|
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
Examples:
|
|
|
|
>>> dataset = get_dataset()
|
|
|
|
>>> dataset = create_custom_dataset()
|
|
|
|
>>> net = Net()
|
|
|
|
>>> net = Net()
|
|
|
|
>>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
|
|
|
>>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
|
|
|
>>> loss_scale_manager = FixedLossScaleManager()
|
|
|
|
>>> loss_scale_manager = FixedLossScaleManager()
|
|
|
@ -659,7 +657,7 @@ class Model:
|
|
|
|
Dict, which returns the loss value and metrics values for the model in the test mode.
|
|
|
|
Dict, which returns the loss value and metrics values for the model in the test mode.
|
|
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
Examples:
|
|
|
|
>>> dataset = get_dataset()
|
|
|
|
>>> dataset = create_custom_dataset()
|
|
|
|
>>> net = Net()
|
|
|
|
>>> net = Net()
|
|
|
|
>>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
|
|
|
>>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
|
|
|
>>> model = Model(net, loss_fn=loss, optimizer=None, metrics={'acc'})
|
|
|
|
>>> model = Model(net, loss_fn=loss, optimizer=None, metrics={'acc'})
|
|
|
|