parent
e8f6c1a4e6
commit
7307c81f31
@ -0,0 +1,81 @@
|
|||||||
|
/**
|
||||||
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
#include "pre_activate/ascend/ir_fission/addn_fission.h"
|
||||||
|
#include <memory>
|
||||||
|
#include <vector>
|
||||||
|
#include "session/anf_runtime_algorithm.h"
|
||||||
|
|
||||||
|
namespace mindspore {
|
||||||
|
namespace opt {
|
||||||
|
namespace {
|
||||||
|
AnfNodePtr CreateNewAddn(const FuncGraphPtr &func_graph, const CNodePtr &origin_addn_cnode, size_t begin_index,
|
||||||
|
size_t offset) {
|
||||||
|
MS_EXCEPTION_IF_NULL(func_graph);
|
||||||
|
MS_EXCEPTION_IF_NULL(origin_addn_cnode);
|
||||||
|
std::vector<AnfNodePtr> new_addn_inputs{NewValueNode(std::make_shared<Primitive>(prim::kPrimAddN->name()))};
|
||||||
|
for (size_t i = begin_index; i < begin_index + offset; ++i) {
|
||||||
|
new_addn_inputs.push_back(origin_addn_cnode->input(i));
|
||||||
|
}
|
||||||
|
CNodePtr new_addn = func_graph->NewCNode(new_addn_inputs);
|
||||||
|
MS_EXCEPTION_IF_NULL(new_addn);
|
||||||
|
new_addn->set_scope(origin_addn_cnode->scope());
|
||||||
|
new_addn->set_abstract(origin_addn_cnode->abstract());
|
||||||
|
AnfAlgo::SetNodeAttr(kAttrN, MakeValue(SizeToInt(offset)), new_addn);
|
||||||
|
return new_addn;
|
||||||
|
}
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
const BaseRef AddnFission::DefinePattern() const {
|
||||||
|
VarPtr Xs = std::make_shared<SeqVar>();
|
||||||
|
return VectorRef({prim::kPrimAddN, Xs});
|
||||||
|
}
|
||||||
|
|
||||||
|
const AnfNodePtr AddnFission::Process(const FuncGraphPtr &func_graph, const AnfNodePtr &node, const EquivPtr &) const {
|
||||||
|
MS_EXCEPTION_IF_NULL(func_graph);
|
||||||
|
MS_EXCEPTION_IF_NULL(node);
|
||||||
|
auto cnode = node->cast<CNodePtr>();
|
||||||
|
MS_EXCEPTION_IF_NULL(cnode);
|
||||||
|
// The real input begins with index 1.
|
||||||
|
size_t origin_input_size = cnode->inputs().size() - 1;
|
||||||
|
if (origin_input_size <= inputs_divisor_) {
|
||||||
|
return nullptr;
|
||||||
|
}
|
||||||
|
CNodePtr new_cnode = cnode;
|
||||||
|
while (origin_input_size > inputs_divisor_) {
|
||||||
|
std::vector<AnfNodePtr> base_addn_inputs{NewValueNode(std::make_shared<Primitive>(prim::kPrimAddN->name()))};
|
||||||
|
size_t cur_input_index = 1;
|
||||||
|
// Divide the inputs of addn by 63.
|
||||||
|
while (origin_input_size - cur_input_index + 1 > inputs_divisor_) {
|
||||||
|
base_addn_inputs.push_back(CreateNewAddn(func_graph, new_cnode, cur_input_index, inputs_divisor_));
|
||||||
|
cur_input_index += inputs_divisor_;
|
||||||
|
}
|
||||||
|
base_addn_inputs.push_back(
|
||||||
|
CreateNewAddn(func_graph, new_cnode, cur_input_index, origin_input_size - cur_input_index + 1));
|
||||||
|
|
||||||
|
CNodePtr base_addn = func_graph->NewCNode(base_addn_inputs);
|
||||||
|
MS_EXCEPTION_IF_NULL(base_addn);
|
||||||
|
MS_EXCEPTION_IF_NULL(new_cnode);
|
||||||
|
base_addn->set_scope(new_cnode->scope());
|
||||||
|
base_addn->set_abstract(new_cnode->abstract());
|
||||||
|
AnfAlgo::SetNodeAttr(kAttrN, MakeValue(SizeToInt(base_addn_inputs.size() - 1)), base_addn);
|
||||||
|
new_cnode = base_addn;
|
||||||
|
origin_input_size = base_addn->inputs().size() - 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
return new_cnode;
|
||||||
|
}
|
||||||
|
} // namespace opt
|
||||||
|
} // namespace mindspore
|
@ -0,0 +1,37 @@
|
|||||||
|
/**
|
||||||
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
#ifndef MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_ADDN_FISSION_H_
|
||||||
|
#define MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_ADDN_FISSION_H_
|
||||||
|
|
||||||
|
#include "pre_activate/common/optimizer.h"
|
||||||
|
|
||||||
|
namespace mindspore {
|
||||||
|
namespace opt {
|
||||||
|
constexpr size_t kAddnInputsDivisor = 63;
|
||||||
|
class AddnFission : public PatternProcessPass {
|
||||||
|
public:
|
||||||
|
explicit AddnFission(bool multigraph = true)
|
||||||
|
: PatternProcessPass("addn_fission", multigraph), inputs_divisor_(kAddnInputsDivisor) {}
|
||||||
|
~AddnFission() override = default;
|
||||||
|
const BaseRef DefinePattern() const override;
|
||||||
|
const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override;
|
||||||
|
|
||||||
|
private:
|
||||||
|
size_t inputs_divisor_;
|
||||||
|
};
|
||||||
|
} // namespace opt
|
||||||
|
} // namespace mindspore
|
||||||
|
#endif // MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_ADDN_FISSION_H_
|
@ -0,0 +1,160 @@
|
|||||||
|
/**
|
||||||
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include "common/backend_common_test.h"
|
||||||
|
#include "common/py_func_graph_fetcher.h"
|
||||||
|
#define private public
|
||||||
|
#define protected public
|
||||||
|
#include "pre_activate/ascend/ir_fission/addn_fission.h"
|
||||||
|
#undef private
|
||||||
|
#undef protected
|
||||||
|
|
||||||
|
namespace mindspore {
|
||||||
|
namespace opt {
|
||||||
|
class TestHWAddnFission : public BackendCommon {
|
||||||
|
public:
|
||||||
|
TestHWAddnFission() : get_py_fun_("gtest_input.pre_activate.addn_fission_test", true) {}
|
||||||
|
~TestHWAddnFission() override = default;
|
||||||
|
|
||||||
|
UT::PyFuncGraphFetcher get_py_fun_;
|
||||||
|
};
|
||||||
|
|
||||||
|
TEST_F(TestHWAddnFission, test_addn_fission_divided_by_2) {
|
||||||
|
FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_addn_fission", "before");
|
||||||
|
EXPECT_NE(g, nullptr);
|
||||||
|
std::vector<int> shp{2, 32, 224, 224};
|
||||||
|
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp);
|
||||||
|
AbstractBasePtrList args_spec_list;
|
||||||
|
for (size_t i = 0; i < 9; ++i) {
|
||||||
|
args_spec_list.push_back(x_abstract);
|
||||||
|
}
|
||||||
|
auto kg = GetKernelGraph(g, args_spec_list);
|
||||||
|
|
||||||
|
auto optimizer = std::make_shared<opt::GraphOptimizer>();
|
||||||
|
auto pm = std::make_shared<opt::PassManager>();
|
||||||
|
auto addn_fission = std::make_shared<opt::AddnFission>();
|
||||||
|
addn_fission->inputs_divisor_ = 2;
|
||||||
|
pm->AddPass(addn_fission);
|
||||||
|
optimizer->AddPassManager(pm);
|
||||||
|
FuncGraphPtr new_graph = optimizer->Optimize(kg);
|
||||||
|
|
||||||
|
FuncGraphPtr g_after = get_py_fun_.CallAndParseRet("test_addn_fission", "after_divided_by_2");
|
||||||
|
EXPECT_NE(g_after, nullptr);
|
||||||
|
auto kg_after = GetKernelGraph(g_after, args_spec_list);
|
||||||
|
EXPECT_TRUE(CheckEqualGraph(kg_after, new_graph));
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_F(TestHWAddnFission, test_addn_fission_divided_by_3) {
|
||||||
|
FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_addn_fission", "before");
|
||||||
|
EXPECT_NE(g, nullptr);
|
||||||
|
std::vector<int> shp{2, 32, 224, 224};
|
||||||
|
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp);
|
||||||
|
AbstractBasePtrList args_spec_list;
|
||||||
|
for (size_t i = 0; i < 9; ++i) {
|
||||||
|
args_spec_list.push_back(x_abstract);
|
||||||
|
}
|
||||||
|
auto kg = GetKernelGraph(g, args_spec_list);
|
||||||
|
|
||||||
|
auto optimizer = std::make_shared<opt::GraphOptimizer>();
|
||||||
|
auto pm = std::make_shared<opt::PassManager>();
|
||||||
|
auto addn_fission = std::make_shared<opt::AddnFission>();
|
||||||
|
addn_fission->inputs_divisor_ = 3;
|
||||||
|
pm->AddPass(addn_fission);
|
||||||
|
optimizer->AddPassManager(pm);
|
||||||
|
FuncGraphPtr new_graph = optimizer->Optimize(kg);
|
||||||
|
|
||||||
|
FuncGraphPtr g_after = get_py_fun_.CallAndParseRet("test_addn_fission", "after_divided_by_3");
|
||||||
|
EXPECT_NE(g_after, nullptr);
|
||||||
|
auto kg_after = GetKernelGraph(g_after, args_spec_list);
|
||||||
|
EXPECT_TRUE(CheckEqualGraph(kg_after, new_graph));
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_F(TestHWAddnFission, test_addn_fission_divided_by_4) {
|
||||||
|
FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_addn_fission", "before");
|
||||||
|
EXPECT_NE(g, nullptr);
|
||||||
|
std::vector<int> shp{2, 32, 224, 224};
|
||||||
|
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp);
|
||||||
|
AbstractBasePtrList args_spec_list;
|
||||||
|
for (size_t i = 0; i < 9; ++i) {
|
||||||
|
args_spec_list.push_back(x_abstract);
|
||||||
|
}
|
||||||
|
auto kg = GetKernelGraph(g, args_spec_list);
|
||||||
|
|
||||||
|
auto optimizer = std::make_shared<opt::GraphOptimizer>();
|
||||||
|
auto pm = std::make_shared<opt::PassManager>();
|
||||||
|
auto addn_fission = std::make_shared<opt::AddnFission>();
|
||||||
|
addn_fission->inputs_divisor_ = 4;
|
||||||
|
pm->AddPass(addn_fission);
|
||||||
|
optimizer->AddPassManager(pm);
|
||||||
|
FuncGraphPtr new_graph = optimizer->Optimize(kg);
|
||||||
|
|
||||||
|
FuncGraphPtr g_after = get_py_fun_.CallAndParseRet("test_addn_fission", "after_divided_by_4");
|
||||||
|
EXPECT_NE(g_after, nullptr);
|
||||||
|
auto kg_after = GetKernelGraph(g_after, args_spec_list);
|
||||||
|
EXPECT_TRUE(CheckEqualGraph(kg_after, new_graph));
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_F(TestHWAddnFission, test_addn_fission_divided_by_8) {
|
||||||
|
FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_addn_fission", "before");
|
||||||
|
EXPECT_NE(g, nullptr);
|
||||||
|
std::vector<int> shp{2, 32, 224, 224};
|
||||||
|
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp);
|
||||||
|
AbstractBasePtrList args_spec_list;
|
||||||
|
for (size_t i = 0; i < 9; ++i) {
|
||||||
|
args_spec_list.push_back(x_abstract);
|
||||||
|
}
|
||||||
|
auto kg = GetKernelGraph(g, args_spec_list);
|
||||||
|
|
||||||
|
auto optimizer = std::make_shared<opt::GraphOptimizer>();
|
||||||
|
auto pm = std::make_shared<opt::PassManager>();
|
||||||
|
auto addn_fission = std::make_shared<opt::AddnFission>();
|
||||||
|
addn_fission->inputs_divisor_ = 8;
|
||||||
|
pm->AddPass(addn_fission);
|
||||||
|
optimizer->AddPassManager(pm);
|
||||||
|
FuncGraphPtr new_graph = optimizer->Optimize(kg);
|
||||||
|
|
||||||
|
FuncGraphPtr g_after = get_py_fun_.CallAndParseRet("test_addn_fission", "after_divided_by_8");
|
||||||
|
EXPECT_NE(g_after, nullptr);
|
||||||
|
auto kg_after = GetKernelGraph(g_after, args_spec_list);
|
||||||
|
EXPECT_TRUE(CheckEqualGraph(kg_after, new_graph));
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_F(TestHWAddnFission, test_addn_fission_divided_by_9) {
|
||||||
|
FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_addn_fission", "before");
|
||||||
|
EXPECT_NE(g, nullptr);
|
||||||
|
std::vector<int> shp{2, 32, 224, 224};
|
||||||
|
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp);
|
||||||
|
AbstractBasePtrList args_spec_list;
|
||||||
|
for (size_t i = 0; i < 9; ++i) {
|
||||||
|
args_spec_list.push_back(x_abstract);
|
||||||
|
}
|
||||||
|
auto kg = GetKernelGraph(g, args_spec_list);
|
||||||
|
|
||||||
|
auto optimizer = std::make_shared<opt::GraphOptimizer>();
|
||||||
|
auto pm = std::make_shared<opt::PassManager>();
|
||||||
|
auto addn_fission = std::make_shared<opt::AddnFission>();
|
||||||
|
addn_fission->inputs_divisor_ = 9;
|
||||||
|
pm->AddPass(addn_fission);
|
||||||
|
optimizer->AddPassManager(pm);
|
||||||
|
FuncGraphPtr new_graph = optimizer->Optimize(kg);
|
||||||
|
|
||||||
|
FuncGraphPtr g_after = get_py_fun_.CallAndParseRet("test_addn_fission", "after_divided_by_9");
|
||||||
|
EXPECT_NE(g_after, nullptr);
|
||||||
|
auto kg_after = GetKernelGraph(g_after, args_spec_list);
|
||||||
|
EXPECT_TRUE(CheckEqualGraph(kg_after, new_graph));
|
||||||
|
}
|
||||||
|
} // namespace opt
|
||||||
|
} // namespace mindspore
|
@ -0,0 +1,80 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
from mindspore.ops import operations as P
|
||||||
|
from mindspore.ops import Primitive
|
||||||
|
|
||||||
|
addn = P.AddN()
|
||||||
|
make_tuple = Primitive('make_tuple')
|
||||||
|
|
||||||
|
|
||||||
|
class FnDict:
|
||||||
|
def __init__(self):
|
||||||
|
self.fnDict = {}
|
||||||
|
|
||||||
|
def __call__(self, fn):
|
||||||
|
self.fnDict[fn.__name__] = fn
|
||||||
|
|
||||||
|
def __getitem__(self, name):
|
||||||
|
return self.fnDict[name]
|
||||||
|
|
||||||
|
|
||||||
|
def test_addn_fission(tag):
|
||||||
|
""" test_adam_apply_one_with_decay_rule """
|
||||||
|
fns = FnDict()
|
||||||
|
|
||||||
|
@fns
|
||||||
|
def before(input0, input1, input2, input3, input4, input5, input6, input7, input8):
|
||||||
|
return addn((input0, input1, input2, input3, input4, input5, input6, input7, input8))
|
||||||
|
|
||||||
|
@fns
|
||||||
|
def after_divided_by_2(input0, input1, input2, input3, input4, input5, input6, input7, input8):
|
||||||
|
a = addn((input0, input1))
|
||||||
|
b = addn((input2, input3))
|
||||||
|
c = addn((input4, input5))
|
||||||
|
d = addn((input6, input7))
|
||||||
|
e = addn((input8,))
|
||||||
|
f = addn((a, b))
|
||||||
|
g = addn((c, d))
|
||||||
|
h = addn((e,))
|
||||||
|
i = addn((f, g))
|
||||||
|
j = addn((h,))
|
||||||
|
return addn((i, j))
|
||||||
|
|
||||||
|
@fns
|
||||||
|
def after_divided_by_3(input0, input1, input2, input3, input4, input5, input6, input7, input8):
|
||||||
|
a = addn((input0, input1, input2))
|
||||||
|
b = addn((input3, input4, input5))
|
||||||
|
c = addn((input6, input7, input8))
|
||||||
|
return addn((a, b, c))
|
||||||
|
|
||||||
|
@fns
|
||||||
|
def after_divided_by_4(input0, input1, input2, input3, input4, input5, input6, input7, input8):
|
||||||
|
a = addn((input0, input1, input2, input3))
|
||||||
|
b = addn((input4, input5, input6, input7))
|
||||||
|
c = addn((input8,))
|
||||||
|
return addn((a, b, c))
|
||||||
|
|
||||||
|
@fns
|
||||||
|
def after_divided_by_8(input0, input1, input2, input3, input4, input5, input6, input7, input8):
|
||||||
|
a = addn((input0, input1, input2, input3, input4, input5, input6, input7))
|
||||||
|
b = addn((input8,))
|
||||||
|
return addn((a, b))
|
||||||
|
|
||||||
|
@fns
|
||||||
|
def after_divided_by_9(input0, input1, input2, input3, input4, input5, input6, input7, input8):
|
||||||
|
return addn((input0, input1, input2, input3, input4, input5, input6, input7, input8))
|
||||||
|
|
||||||
|
return fns[tag]
|
Loading…
Reference in new issue