!9166 FIx errors in classes' examples

From: @zhangz0911gm
Reviewed-by: @liangchenghui
Signed-off-by:
pull/9166/MERGE
mindspore-ci-bot 4 years ago committed by Gitee
commit 73cea20aab

@ -128,13 +128,13 @@ def uniform(shape, minval, maxval, seed=None, dtype=mstype.float32):
The dtype is designated as the input `dtype`. The dtype is designated as the input `dtype`.
Examples: Examples:
>>> For discrete uniform distribution, only one number is allowed for both minval and maxval: >>> # For discrete uniform distribution, only one number is allowed for both minval and maxval:
>>> shape = (4, 2) >>> shape = (4, 2)
>>> minval = Tensor(1, mstype.int32) >>> minval = Tensor(1, mstype.int32)
>>> maxval = Tensor(2, mstype.int32) >>> maxval = Tensor(2, mstype.int32)
>>> output = C.uniform(shape, minval, maxval, seed=5, dtype=mstype.int32) >>> output = C.uniform(shape, minval, maxval, seed=5, dtype=mstype.int32)
>>> >>>
>>> For continuous uniform distribution, minval and maxval can be multi-dimentional: >>> # For continuous uniform distribution, minval and maxval can be multi-dimentional:
>>> shape = (4, 2) >>> shape = (4, 2)
>>> minval = Tensor([1.0, 2.0], mstype.float32) >>> minval = Tensor([1.0, 2.0], mstype.float32)
>>> maxval = Tensor([4.0, 5.0], mstype.float32) >>> maxval = Tensor([4.0, 5.0], mstype.float32)

@ -1151,8 +1151,8 @@ class Ones(PrimitiveWithInfer):
>>> ones = ops.Ones() >>> ones = ops.Ones()
>>> output = ones((2, 2), mindspore.float32) >>> output = ones((2, 2), mindspore.float32)
>>> print(output) >>> print(output)
[[1.0, 1.0], [[1. 1.]
[1.0, 1.0]] [1. 1.]]
""" """
@prim_attr_register @prim_attr_register
@ -1204,8 +1204,8 @@ class Zeros(PrimitiveWithInfer):
>>> zeros = ops.Zeros() >>> zeros = ops.Zeros()
>>> output = zeros((2, 2), mindspore.float32) >>> output = zeros((2, 2), mindspore.float32)
>>> print(output) >>> print(output)
[[0.0, 0.0], [[0. 0.]
[0.0, 0.0]] [0. 0.]]
""" """
@ -3348,7 +3348,8 @@ class ScatterSub(_ScatterOp):
>>> scatter_sub = ops.ScatterSub() >>> scatter_sub = ops.ScatterSub()
>>> output = scatter_sub(input_x, indices, updates) >>> output = scatter_sub(input_x, indices, updates)
>>> print(output) >>> print(output)
[[-1.0, -1.0, -1.0], [-1.0, -1.0, -1.0]] [[-1. -1. -1.]
[-1. -1. -1.]]
""" """

@ -1376,8 +1376,8 @@ class Rsqrt(PrimitiveWithInfer):
>>> rsqrt = ops.Rsqrt() >>> rsqrt = ops.Rsqrt()
>>> output = rsqrt(input_tensor) >>> output = rsqrt(input_tensor)
>>> print(output) >>> print(output)
[[0.5 0.5 ] [[0.5 0.5 ]
[0.333334 0.333334]] [0.33333334 0.33333334]]
""" """
@prim_attr_register @prim_attr_register
@ -1677,7 +1677,7 @@ class Log(PrimitiveWithInfer):
>>> log = ops.Log() >>> log = ops.Log()
>>> output = log(input_x) >>> output = log(input_x)
>>> print(output) >>> print(output)
[0. 0.6931472 1.38629444] [0. 0.6931472 1.3862944]
""" """
@prim_attr_register @prim_attr_register

Loading…
Cancel
Save