!6484 add hard tanh fp32

Merge pull request !6484 from zhaozhenlong/lite/issue/hard_tanh_fp32
pull/6484/MERGE
mindspore-ci-bot 4 years ago committed by Gitee
commit 74ed06f6dd

@ -116,3 +116,21 @@ int HSwish(const float *src, int length, float *dst) {
} }
return NNACL_OK; return NNACL_OK;
} }
int HardTanh(const float *src, int length, float *dst, float min_val, float max_val) {
if (max_val <= min_val) {
return NNACL_ERR;
}
int i = 0;
for (i = 0; i < length; ++i) {
float in = src[i];
if (in < min_val) {
dst[i] = min_val;
} else if (in > max_val) {
dst[i] = max_val;
} else {
dst[i] = in;
}
}
return NNACL_OK;
}

@ -24,6 +24,8 @@ typedef struct ActivationParameter {
OpParameter op_parameter_; OpParameter op_parameter_;
int type_; int type_;
float alpha_; float alpha_;
float min_val_;
float max_val_;
} ActivationParameter; } ActivationParameter;
#ifdef __cplusplus #ifdef __cplusplus
@ -35,6 +37,7 @@ int LRelu(const float *src, int length, float *dst, float alpha);
int Sigmoid(const float *src, int length, float *dst); int Sigmoid(const float *src, int length, float *dst);
int Tanh(const float *src, int length, float *dst); int Tanh(const float *src, int length, float *dst);
int HSwish(const float *src, int length, float *dst); int HSwish(const float *src, int length, float *dst);
int HardTanh(const float *src, int length, float *dst, float min_val, float max_val);
#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif

@ -57,7 +57,8 @@ enum ActivationType : byte {
HSIGMOID = 13, HSIGMOID = 13,
THRESHOLDRELU = 14, THRESHOLDRELU = 14,
LINEAR = 15, LINEAR = 15,
UNKNOW = 16 HARD_TANH = 16,
UNKNOW = 17
} }
enum ActivationGradType : byte { enum ActivationGradType : byte {
NO_ACTIVATION = 0, NO_ACTIVATION = 0,
@ -155,6 +156,8 @@ table SoftMax {
table Activation { table Activation {
type: ActivationType = 0; type: ActivationType = 0;
alpha: float = 0.2; alpha: float = 0.2;
min_val: float = -1.0;
max_val: float = 1.0;
} }
table ActivationGrad { table ActivationGrad {
type: ActivationType = 0; type: ActivationType = 0;

@ -22,9 +22,13 @@ namespace lite {
#ifdef PRIMITIVE_WRITEABLE #ifdef PRIMITIVE_WRITEABLE
int Activation::GetType() const { return this->primitive_->value.AsActivation()->type; } int Activation::GetType() const { return this->primitive_->value.AsActivation()->type; }
float Activation::GetAlpha() const { return this->primitive_->value.AsActivation()->alpha; } float Activation::GetAlpha() const { return this->primitive_->value.AsActivation()->alpha; }
float Activation::GetMinVal() const { return this->primitive_->value.AsActivation()->min_val; }
float Activation::GetMaxVal() const { return this->primitive_->value.AsActivation()->max_val; }
void Activation::SetType(int type) { this->primitive_->value.AsActivation()->type = (schema::ActivationType)type; } void Activation::SetType(int type) { this->primitive_->value.AsActivation()->type = (schema::ActivationType)type; }
void Activation::SetAlpha(float alpha) { this->primitive_->value.AsActivation()->alpha = alpha; } void Activation::SetAlpha(float alpha) { this->primitive_->value.AsActivation()->alpha = alpha; }
void Activation::SetMinVal(float min_val) { this->primitive_->value.AsActivation()->min_val = min_val; }
void Activation::SetMaxVal(float max_val) { this->primitive_->value.AsActivation()->max_val = max_val; }
int Activation::UnPackAttr(const Primitive &prim, const std::vector<AnfNodePtr> &inputs) { int Activation::UnPackAttr(const Primitive &prim, const std::vector<AnfNodePtr> &inputs) {
if (this->primitive_ == nullptr) { if (this->primitive_ == nullptr) {
@ -63,13 +67,15 @@ int Activation::UnPackToFlatBuilder(const schema::Primitive *primitive, flatbuff
MS_LOG(ERROR) << "value_as_Activation return nullptr"; MS_LOG(ERROR) << "value_as_Activation return nullptr";
return RET_ERROR; return RET_ERROR;
} }
auto val_offset = schema::CreateActivation(*fbb, attr->type(), attr->alpha()); auto val_offset = schema::CreateActivation(*fbb, attr->type(), attr->alpha(), attr->min_val(), attr->max_val());
auto prim_offset = schema::CreatePrimitive(*fbb, schema::PrimitiveType_Activation, val_offset.o); auto prim_offset = schema::CreatePrimitive(*fbb, schema::PrimitiveType_Activation, val_offset.o);
fbb->Finish(prim_offset); fbb->Finish(prim_offset);
return RET_OK; return RET_OK;
} }
int Activation::GetType() const { return this->primitive_->value_as_Activation()->type(); } int Activation::GetType() const { return this->primitive_->value_as_Activation()->type(); }
float Activation::GetAlpha() const { return this->primitive_->value_as_Activation()->alpha(); } float Activation::GetAlpha() const { return this->primitive_->value_as_Activation()->alpha(); }
float Activation::GetMinVal() const { return this->primitive_->value_as_Activation()->min_val(); }
float Activation::GetMaxVal() const { return this->primitive_->value_as_Activation()->max_val(); }
#endif #endif
} // namespace lite } // namespace lite
} // namespace mindspore } // namespace mindspore

@ -33,6 +33,8 @@ class Activation : public PrimitiveC {
int UnPackAttr(const Primitive &prim, const std::vector<AnfNodePtr> &inputs) override; int UnPackAttr(const Primitive &prim, const std::vector<AnfNodePtr> &inputs) override;
void SetType(int type); void SetType(int type);
void SetAlpha(float alpha); void SetAlpha(float alpha);
void SetMinVal(float minVal);
void SetMaxVal(float maxVal);
#else #else
Activation() = default; Activation() = default;
@ -40,6 +42,8 @@ class Activation : public PrimitiveC {
#endif #endif
int GetType() const; int GetType() const;
float GetAlpha() const; float GetAlpha() const;
float GetMinVal() const;
float GetMaxVal() const;
}; };
} // namespace lite } // namespace lite
} // namespace mindspore } // namespace mindspore

@ -636,6 +636,8 @@ OpParameter *PopulateActivationParameter(const mindspore::lite::PrimitiveC *prim
reinterpret_cast<mindspore::lite::Activation *>(const_cast<mindspore::lite::PrimitiveC *>(primitive)); reinterpret_cast<mindspore::lite::Activation *>(const_cast<mindspore::lite::PrimitiveC *>(primitive));
act_param->type_ = static_cast<int>(activation->GetType()); act_param->type_ = static_cast<int>(activation->GetType());
act_param->alpha_ = activation->GetAlpha(); act_param->alpha_ = activation->GetAlpha();
act_param->min_val_ = activation->GetMinVal();
act_param->max_val_ = activation->GetMaxVal();
return reinterpret_cast<OpParameter *>(act_param); return reinterpret_cast<OpParameter *>(act_param);
} }

@ -57,6 +57,8 @@ int ActivationCPUKernel::DoActivation(int task_id) {
error_code = Tanh(input_addr + stride * task_id, count, output_addr + stride * task_id); error_code = Tanh(input_addr + stride * task_id, count, output_addr + stride * task_id);
} else if (type_ == schema::ActivationType_HSWISH) { } else if (type_ == schema::ActivationType_HSWISH) {
error_code = HSwish(input_addr + stride * task_id, count, output_addr + stride * task_id); error_code = HSwish(input_addr + stride * task_id, count, output_addr + stride * task_id);
} else if (type_ == schema::ActivationType_HARD_TANH) {
error_code = HardTanh(input_addr + stride * task_id, count, output_addr + stride * task_id, min_val_, max_val_);
} else { } else {
MS_LOG(ERROR) << "Activation type error"; MS_LOG(ERROR) << "Activation type error";
return RET_ERROR; return RET_ERROR;

@ -30,6 +30,8 @@ class ActivationCPUKernel : public LiteKernel {
: LiteKernel(param, inputs, outputs, ctx, primitive), thread_count_(ctx->thread_num_) { : LiteKernel(param, inputs, outputs, ctx, primitive), thread_count_(ctx->thread_num_) {
type_ = (reinterpret_cast<ActivationParameter *>(param))->type_; type_ = (reinterpret_cast<ActivationParameter *>(param))->type_;
alpha_ = (reinterpret_cast<ActivationParameter *>(param))->alpha_; alpha_ = (reinterpret_cast<ActivationParameter *>(param))->alpha_;
min_val_ = (reinterpret_cast<ActivationParameter *>(param))->min_val_;
max_val_ = (reinterpret_cast<ActivationParameter *>(param))->max_val_;
} }
~ActivationCPUKernel() override = default; ~ActivationCPUKernel() override = default;
@ -42,6 +44,8 @@ class ActivationCPUKernel : public LiteKernel {
int thread_count_; int thread_count_;
int type_; int type_;
float alpha_; float alpha_;
float min_val_;
float max_val_;
}; };
} // namespace mindspore::kernel } // namespace mindspore::kernel

@ -126,4 +126,93 @@ TEST_F(TestActivationFp32, HSwishFp32) {
input0_tensor.SetData(nullptr); input0_tensor.SetData(nullptr);
output0_tensor.SetData(nullptr); output0_tensor.SetData(nullptr);
} }
TEST_F(TestActivationFp32, HardTanh1) {
std::vector<lite::Tensor *> inputs_tensor;
std::vector<lite::Tensor *> outputs_tensor;
ActivationParameter op_param;
op_param.op_parameter_.type_ = schema::PrimitiveType_Activation;
op_param.type_ = schema::ActivationType_HARD_TANH;
op_param.min_val_ = -1.0f;
op_param.max_val_ = 1.0f;
std::vector<float> input = {-2.0, -1.0, -0.5, 0.0, 0.5, 1.0, 5.0, 6.0};
std::vector<int> in_shape = {8};
lite::Tensor input0_tensor;
inputs_tensor.push_back(&input0_tensor);
input0_tensor.SetData(input.data());
input0_tensor.set_shape(in_shape);
std::vector<float> output(8);
std::vector<int> output_shape = {8};
lite::Tensor output0_tensor;
outputs_tensor.push_back(&output0_tensor);
output0_tensor.SetData(output.data());
kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeFloat32, schema::PrimitiveType_Activation};
auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc);
ASSERT_NE(creator, nullptr);
lite::InnerContext ctx;
ctx.thread_num_ = 2;
ASSERT_EQ(lite::RET_OK, ctx.Init());
kernel::LiteKernel *kernel =
creator(inputs_tensor, outputs_tensor, reinterpret_cast<OpParameter *>(&op_param), &ctx, desc, nullptr);
ASSERT_NE(kernel, nullptr);
auto output_tensor_shape = output0_tensor.shape();
kernel->Run();
std::vector<float> expect_output = {-1.0, -1.0, -0.5, 0.0, 0.5, 1.0, 1.0, 1.0};
CompareOutputData(output.data(), expect_output.data(), 8, 0.00001);
input0_tensor.SetData(nullptr);
output0_tensor.SetData(nullptr);
}
TEST_F(TestActivationFp32, HardTanh2) {
std::vector<lite::Tensor *> inputs_tensor;
std::vector<lite::Tensor *> outputs_tensor;
ActivationParameter op_param;
op_param.op_parameter_.type_ = schema::PrimitiveType_Activation;
op_param.type_ = schema::ActivationType_HARD_TANH;
op_param.min_val_ = -2.0f;
op_param.max_val_ = 2.0f;
std::vector<float> input = {-3.0, -2.0, -1.0, 0.0, 1.0, 5.0, 6.0, 7.0};
std::vector<int> in_shape = {8};
lite::Tensor input0_tensor;
inputs_tensor.push_back(&input0_tensor);
input0_tensor.SetData(input.data());
input0_tensor.set_shape(in_shape);
std::vector<float> output(8);
std::vector<int> output_shape = {8};
lite::Tensor output0_tensor;
outputs_tensor.push_back(&output0_tensor);
output0_tensor.SetData(output.data());
kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeFloat32, schema::PrimitiveType_Activation};
auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc);
ASSERT_NE(creator, nullptr);
lite::InnerContext ctx;
ctx.thread_num_ = 2;
ASSERT_EQ(lite::RET_OK, ctx.Init());
kernel::LiteKernel *kernel =
creator(inputs_tensor, outputs_tensor, reinterpret_cast<OpParameter *>(&op_param), &ctx, desc, nullptr);
ASSERT_NE(kernel, nullptr);
auto output_tensor_shape = output0_tensor.shape();
kernel->Run();
std::vector<float> expect_output = {-2.0, -2.0, -1.0, 0.0, 1.0, 2.0, 2.0, 2.0};
CompareOutputData(output.data(), expect_output.data(), 8, 0.00001);
input0_tensor.SetData(nullptr);
output0_tensor.SetData(nullptr);
}
} // namespace mindspore } // namespace mindspore

Loading…
Cancel
Save