|
|
|
@ -51,7 +51,6 @@ def _update_run_op(beta1, beta2, eps, lr, weight_decay, param, m, v, gradient, d
|
|
|
|
|
Returns:
|
|
|
|
|
Tensor, the new value of v after updating.
|
|
|
|
|
"""
|
|
|
|
|
success = True
|
|
|
|
|
if optim_filter:
|
|
|
|
|
op_mul = P.Mul()
|
|
|
|
|
op_square = P.Square()
|
|
|
|
@ -81,8 +80,9 @@ def _update_run_op(beta1, beta2, eps, lr, weight_decay, param, m, v, gradient, d
|
|
|
|
|
next_param = F.depend(next_param, F.assign(param, op_cast(next_param, F.dtype(param))))
|
|
|
|
|
next_param = F.depend(next_param, F.assign(m, op_cast(next_m, F.dtype(m))))
|
|
|
|
|
next_param = F.depend(next_param, F.assign(v, op_cast(next_v, F.dtype(v))))
|
|
|
|
|
success = F.depend(success, next_param)
|
|
|
|
|
return success
|
|
|
|
|
|
|
|
|
|
return op_cast(next_param, F.dtype(param))
|
|
|
|
|
return gradient
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@_adam_opt.register("Function", "Function", "Function", "Function", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor",
|
|
|
|
|