fix CropAndResize doc

pull/2823/head
xutianchun 5 years ago
parent 0cd9e4cc11
commit 77b5ae054a

@ -34,21 +34,21 @@ class CropAndResize(PrimitiveWithInfer):
Inputs: Inputs:
- **x** (Tensor) - The input image must be a 4-D tensor of shape [batch, image_height, image_width, depth]. - **x** (Tensor) - The input image must be a 4-D tensor of shape [batch, image_height, image_width, depth].
Types allowed: int8, int16, int32, int64, float16, float32, float64, uint8, uint16. Types allowed: int8, int16, int32, int64, float16, float32, float64, uint8, uint16.
- **boxes** (Tensor) - A 2-D tensor of shape [num_boxes, 4]. - **boxes** (Tensor) - A 2-D tensor of shape [num_boxes, 4].
The i-th row of the tensor specifies the coordinates of a box in the box_ind[i] image The i-th row of the tensor specifies the coordinates of a box in the box_ind[i] image
and is specified in normalized coordinates [y1, x1, y2, x2]. A normalized coordinate value of y is mapped to and is specified in normalized coordinates [y1, x1, y2, x2]. A normalized coordinate value of y is mapped to
the image coordinate at y * (image_height - 1), so as the [0, 1] interval of normalized image height is the image coordinate at y * (image_height - 1), so as the [0, 1] interval of normalized image height is
mapped to [0, image_height - 1] in image height coordinates. We do allow y1 > y2, in which case the sampled mapped to [0, image_height - 1] in image height coordinates. We do allow y1 > y2, in which case the sampled
crop is an up-down flipped version of the original image. The width dimension is treated similarly. crop is an up-down flipped version of the original image. The width dimension is treated similarly.
Normalized coordinates outside the [0, 1] range are allowed, in which case we use extrapolation_value to Normalized coordinates outside the [0, 1] range are allowed, in which case we use extrapolation_value to
extrapolate the input image values. Types allowd: float32. extrapolate the input image values. Types allowd: float32.
- **box_index** (Tensor) - A 1-D tensor of shape [num_boxes] with int32 values in [0, batch). - **box_index** (Tensor) - A 1-D tensor of shape [num_boxes] with int32 values in [0, batch).
The value of box_ind[i] specifies the image that the i-th box refers to. Types allowd: int32. The value of box_ind[i] specifies the image that the i-th box refers to. Types allowd: int32.
- **crop_size** (Tensor) - Only constant value is allowd. Types allowed: int32. - **crop_size** (Tensor) - Only constant value is allowd. Types allowed: int32.
A 1-D tensor of 2 elements, size = [crop_height, crop_width]. A 1-D tensor of 2 elements, size = [crop_height, crop_width].
All cropped image patches are resized to this size. The aspect ratio of the image content is not preserved. All cropped image patches are resized to this size. The aspect ratio of the image content is not preserved.
Both crop_height and crop_width need to be positive. Both crop_height and crop_width need to be positive.
Outputs: Outputs:
A 4-D tensor of shape [num_boxes, crop_height, crop_width, depth] with type: float32. A 4-D tensor of shape [num_boxes, crop_height, crop_width, depth] with type: float32.
@ -68,8 +68,8 @@ class CropAndResize(PrimitiveWithInfer):
>>> IMAGE_WIDTH = 256 >>> IMAGE_WIDTH = 256
>>> CHANNELS = 3 >>> CHANNELS = 3
>>> image = np.random.normal(size=[BATCH_SIZE, IMAGE_HEIGHT, IMAGE_WIDTH, CHANNELS]).astype(np.float32) >>> image = np.random.normal(size=[BATCH_SIZE, IMAGE_HEIGHT, IMAGE_WIDTH, CHANNELS]).astype(np.float32)
>>> boxes = np.random.uniform(shape=[NUM_BOXES, 4]).astype(np.float32) >>> boxes = np.random.uniform(size=[NUM_BOXES, 4]).astype(np.float32)
>>> box_index = np.random.uniform(shape=[NUM_BOXES], low=0, high=BATCH_SIZE).astype(np.int32) >>> box_index = np.random.uniform(size=[NUM_BOXES], low=0, high=BATCH_SIZE).astype(np.int32)
>>> crop_size = np.array([24, 24]).astype(np.int32) >>> crop_size = np.array([24, 24]).astype(np.int32)
>>> crop_and_resize = CropAndResizeNet(crop_size=Tensor(crop_size)) >>> crop_and_resize = CropAndResizeNet(crop_size=Tensor(crop_size))
>>> output = crop_and_resize(Tensor(image), Tensor(boxes), Tensor(box_index)) >>> output = crop_and_resize(Tensor(image), Tensor(boxes), Tensor(box_index))

@ -41,8 +41,8 @@ def test_net_float32():
image_width = 256 image_width = 256
channels = 3 channels = 3
image = np.random.normal(size=[batch_size, image_height, image_width, channels]).astype(np.float32) image = np.random.normal(size=[batch_size, image_height, image_width, channels]).astype(np.float32)
boxes = np.random.uniform(shape=[num_boxes, 4]).astype(np.float32) boxes = np.random.uniform(size=[num_boxes, 4]).astype(np.float32)
box_index = np.random.uniform(shape=[num_boxes], low=0, high=batch_size).astype(np.int32) box_index = np.random.uniform(size=[num_boxes], low=0, high=batch_size).astype(np.int32)
crop_size = np.array([24, 24]).astype(np.int32) crop_size = np.array([24, 24]).astype(np.int32)
net = Net(crop_size=Tensor(crop_size)) net = Net(crop_size=Tensor(crop_size))
output = net(Tensor(image), Tensor(boxes), Tensor(box_index)) output = net(Tensor(image), Tensor(boxes), Tensor(box_index))

Loading…
Cancel
Save