|
|
|
@ -68,8 +68,8 @@ class CropAndResize(PrimitiveWithInfer):
|
|
|
|
|
>>> IMAGE_WIDTH = 256
|
|
|
|
|
>>> CHANNELS = 3
|
|
|
|
|
>>> image = np.random.normal(size=[BATCH_SIZE, IMAGE_HEIGHT, IMAGE_WIDTH, CHANNELS]).astype(np.float32)
|
|
|
|
|
>>> boxes = np.random.uniform(shape=[NUM_BOXES, 4]).astype(np.float32)
|
|
|
|
|
>>> box_index = np.random.uniform(shape=[NUM_BOXES], low=0, high=BATCH_SIZE).astype(np.int32)
|
|
|
|
|
>>> boxes = np.random.uniform(size=[NUM_BOXES, 4]).astype(np.float32)
|
|
|
|
|
>>> box_index = np.random.uniform(size=[NUM_BOXES], low=0, high=BATCH_SIZE).astype(np.int32)
|
|
|
|
|
>>> crop_size = np.array([24, 24]).astype(np.int32)
|
|
|
|
|
>>> crop_and_resize = CropAndResizeNet(crop_size=Tensor(crop_size))
|
|
|
|
|
>>> output = crop_and_resize(Tensor(image), Tensor(boxes), Tensor(box_index))
|
|
|
|
|