!8621 add conv_tuplegetitem_fusion & infershape pass & slice_prepose pass to anf_transform
From: @wangzhe128 Reviewed-by: @hangangqiang,@hangangqiang,@zhang_xue_tong Signed-off-by: @hangangqiangpull/8621/MERGE
commit
7da291f94f
@ -0,0 +1,79 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "tools/optimizer/fusion/conv_tuplegetitem_fusion.h"
|
||||
#include <memory>
|
||||
#include "src/ops/primitive_c.h"
|
||||
#include "src/param_value_lite.h"
|
||||
#include "schema/inner/model_generated.h"
|
||||
#include "tools/optimizer/common/gllo_utils.h"
|
||||
#include "securec/include/securec.h"
|
||||
|
||||
namespace mindspore::opt {
|
||||
namespace {
|
||||
constexpr size_t kTupleGetItemLen = 3;
|
||||
bool IsTupleGetItemNode(const BaseRef &n) {
|
||||
if (utils::isa<CNodePtr>(n) || utils::isa<ValueNodePtr>(n)) {
|
||||
auto type = opt::GetCNodeType(n);
|
||||
return type == schema::PrimitiveType_TupleGetItem;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
} // namespace
|
||||
|
||||
const BaseRef ConvTupleGetItemFusion::DefinePattern() const {
|
||||
auto tuple_var = std::make_shared<CondVar>(IsTupleGetItemNode);
|
||||
auto tuple_index = std::make_shared<Var>();
|
||||
auto conv_var = std::make_shared<CondVar>(IsConvNode);
|
||||
return VectorRef({tuple_var, conv_var, tuple_index});
|
||||
}
|
||||
|
||||
const AnfNodePtr ConvTupleGetItemFusion::Process(const FuncGraphPtr &func_graph, const AnfNodePtr &node,
|
||||
const EquivPtr &equiv) const {
|
||||
MS_LOG(DEBUG) << "conv_tuplegetitem_fusion pass";
|
||||
if (CheckIfFuncGraphIsNull(func_graph) != lite::RET_OK || CheckIfAnfNodeIsNull(node) != lite::RET_OK) {
|
||||
lite::ReturnCode::GetSingleReturnCode()->UpdateReturnCode(lite::RET_NULL_PTR);
|
||||
return nullptr;
|
||||
}
|
||||
auto tuple_cnode = node->cast<CNodePtr>();
|
||||
if (CheckIfCNodeIsNull(tuple_cnode) != lite::RET_OK ||
|
||||
CheckInputSize(tuple_cnode, kTupleGetItemLen) != lite::RET_OK) {
|
||||
return nullptr;
|
||||
}
|
||||
auto idx = GetTupleGetItemOutIndex(tuple_cnode);
|
||||
if (idx != 0) {
|
||||
MS_LOG(DEBUG) << "TupleGetItem's idx is not 0";
|
||||
return nullptr;
|
||||
}
|
||||
auto conv_node = tuple_cnode->input(1);
|
||||
if (CheckIfAnfNodeIsNull(conv_node) != lite::RET_OK) {
|
||||
return nullptr;
|
||||
}
|
||||
auto conv_cnode = conv_node->cast<CNodePtr>();
|
||||
if (CheckIfCNodeIsNull(conv_cnode) != lite::RET_OK) {
|
||||
return nullptr;
|
||||
}
|
||||
auto abstr = conv_cnode->abstract();
|
||||
if (utils::isa<abstract::AbstractTuplePtr>(abstr)) {
|
||||
auto elements = utils::cast<abstract::AbstractTuplePtr>(abstr)->elements();
|
||||
if (elements.empty()) {
|
||||
MS_LOG(ERROR) << "AbstractTuple is empty";
|
||||
return nullptr;
|
||||
}
|
||||
conv_node->set_abstract(elements[0]);
|
||||
}
|
||||
return conv_node;
|
||||
}
|
||||
} // namespace mindspore::opt
|
@ -0,0 +1,31 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef LITE_MINDSPORE_LITE_TOOLS_OPTIMIZER_FUSION_CONV_TUPLEGETITEM_FUSION_H_
|
||||
#define LITE_MINDSPORE_LITE_TOOLS_OPTIMIZER_FUSION_CONV_TUPLEGETITEM_FUSION_H_
|
||||
#include <string>
|
||||
#include "backend/optimizer/common/optimizer.h"
|
||||
namespace mindspore::opt {
|
||||
class ConvTupleGetItemFusion : public PatternProcessPass {
|
||||
public:
|
||||
explicit ConvTupleGetItemFusion(const std::string &name = "conv_tuplegetitem_fusion", bool multigraph = true)
|
||||
: PatternProcessPass(name, multigraph) {}
|
||||
~ConvTupleGetItemFusion() override = default;
|
||||
const BaseRef DefinePattern() const override;
|
||||
const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override;
|
||||
};
|
||||
} // namespace mindspore::opt
|
||||
|
||||
#endif // LITE_MINDSPORE_LITE_TOOLS_OPTIMIZER_FUSION_CONV_TUPLEGETITEM_FUSION_H_
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,48 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_LITE_TOOLS_OPTIMIZER_GRAPH_INFERSHAPE_PASS_H_
|
||||
#define MINDSPORE_LITE_TOOLS_OPTIMIZER_GRAPH_INFERSHAPE_PASS_H_
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include "tools/converter/converter_flags.h"
|
||||
#include "tools/optimizer/common/gllo_utils.h"
|
||||
#include "backend/optimizer/common/pass.h"
|
||||
#include "mindspore/lite/src/tensor.h"
|
||||
#include "mindspore/lite/include/errorcode.h"
|
||||
using mindspore::lite::STATUS;
|
||||
using mindspore::lite::converter::FmkType;
|
||||
namespace mindspore::opt {
|
||||
class InferShapePass : public Pass {
|
||||
public:
|
||||
InferShapePass() : Pass("infershape_pass") {}
|
||||
~InferShapePass() override = default;
|
||||
bool Run(const FuncGraphPtr &graph) override;
|
||||
void SetFmkType(FmkType fmkType) { this->fmk_type = fmkType; }
|
||||
|
||||
private:
|
||||
void FreeTensors(std::vector<lite::Tensor *> *tensors);
|
||||
abstract::AbstractTensorPtr ConvertLiteTensorToAbstractTensor(lite::Tensor *tensor);
|
||||
STATUS GetCNodeInputTensors(const CNodePtr &cnode, std::vector<lite::Tensor *> *input_tensors);
|
||||
STATUS GetCNodeOutputTensors(const CNodePtr &cnode, std::vector<lite::Tensor *> *output_tensors);
|
||||
STATUS SetParameterAbstract(const ParameterPtr ¶meter);
|
||||
STATUS SetCNodeAbstract(const std::vector<lite::Tensor *> &output_tensors, const std::shared_ptr<CNode> &cnode);
|
||||
|
||||
private:
|
||||
FmkType fmk_type = lite::converter::FmkType_ONNX;
|
||||
};
|
||||
} // namespace mindspore::opt
|
||||
#endif // MINDSPORE_LITE_TOOLS_OPTIMIZER_GRAPH_INFERSHAPE_PASS_H_
|
@ -0,0 +1,247 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "tools/optimizer/graph/slice_prepose_pass.h"
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
#include "mindspore/lite/include/errorcode.h"
|
||||
#include "tools/optimizer/common/gllo_utils.h"
|
||||
#include "backend/optimizer/common/helper.h"
|
||||
#include "src/ops/primitive_c.h"
|
||||
#include "schema/inner/model_generated.h"
|
||||
#include "src/common/log_adapter.h"
|
||||
|
||||
using mindspore::lite::PrimitiveC;
|
||||
namespace mindspore::opt {
|
||||
namespace {
|
||||
std::vector<int32_t> GetCNodeInputShape(const CNodePtr &cnode, size_t index = 1) {
|
||||
MS_ASSERT(cnode != nullptr);
|
||||
std::vector<int32_t> empty_shape;
|
||||
if (index < 1 || cnode->inputs().size() <= index) {
|
||||
MS_LOG(ERROR) << "out of index";
|
||||
return empty_shape;
|
||||
}
|
||||
auto abstract = GetCNodeInputAbstract(cnode, index);
|
||||
if (abstract == nullptr) {
|
||||
MS_LOG(ERROR) << "Abstract of CNode is nullptr";
|
||||
return empty_shape;
|
||||
}
|
||||
if (!utils::isa<abstract::AbstractTensorPtr>(abstract)) {
|
||||
MS_LOG(DEBUG) << "abstract is not AbstractTensor";
|
||||
return empty_shape;
|
||||
}
|
||||
auto abstract_tensor = utils::cast<abstract::AbstractTensorPtr>(abstract);
|
||||
if (!utils::isa<ParamValueLitePtr>(abstract_tensor->GetValueTrack())) {
|
||||
MS_LOG(DEBUG) << "Value of abstract is not ParamValueLite, indicate that infershape has failed";
|
||||
return empty_shape;
|
||||
}
|
||||
auto param_value_lite = utils::cast<ParamValueLitePtr>(abstract_tensor->GetValueTrack());
|
||||
if (param_value_lite == nullptr) {
|
||||
MS_LOG(ERROR) << "ParamValueLite of abstract is nullptr";
|
||||
return empty_shape;
|
||||
}
|
||||
return param_value_lite->tensor_shape();
|
||||
}
|
||||
} // namespace
|
||||
|
||||
schema::SliceT *SlicePreposePass::GetSliceT(const CNodePtr &cnode) {
|
||||
if (cnode == nullptr) {
|
||||
return nullptr;
|
||||
}
|
||||
auto primc = GetValueNode<std::shared_ptr<PrimitiveC>>(cnode->input(0));
|
||||
if (primc == nullptr) {
|
||||
return nullptr;
|
||||
}
|
||||
auto primt = primc->GetPrimitiveT();
|
||||
if (primt == nullptr || primt->value.AsSlice() == nullptr) {
|
||||
return nullptr;
|
||||
}
|
||||
return primt->value.AsSlice();
|
||||
}
|
||||
|
||||
STATUS SlicePreposePass::SwapSliceWithPreceed(const FuncGraphPtr &graph, const CNodePtr &slice_cnode,
|
||||
const CNodePtr &preceed_cnode, const int index,
|
||||
const TransactionPtr &tr) {
|
||||
MS_ASSERT(graph != nullptr);
|
||||
MS_ASSERT(slice_cnode != nullptr);
|
||||
MS_ASSERT(preceed_cnode != nullptr);
|
||||
if (slice_cnode->input(1) != preceed_cnode) {
|
||||
MS_LOG(ERROR) << "preceed node must be slice node's direct parent";
|
||||
return RET_ERROR;
|
||||
}
|
||||
if (IsMultiOutputTensors(graph, preceed_cnode)) {
|
||||
MS_LOG(ERROR) << "preceed node referenced by multi nodes not support swap";
|
||||
return RET_ERROR;
|
||||
}
|
||||
auto manager = graph->manager();
|
||||
if (manager == nullptr) {
|
||||
MS_LOG(ERROR) << "manager is nullptr";
|
||||
return RET_ERROR;
|
||||
}
|
||||
auto node_users = manager->node_users()[slice_cnode];
|
||||
if (tr != nullptr) { // do swap with transaction
|
||||
for (auto &node_user : node_users) {
|
||||
tr->SetEdge(node_user.first, node_user.second, preceed_cnode);
|
||||
}
|
||||
tr->SetEdge(slice_cnode, 1, preceed_cnode->input(index));
|
||||
tr->SetEdge(preceed_cnode, index, slice_cnode);
|
||||
} else {
|
||||
for (auto &node_user : node_users) {
|
||||
manager->SetEdge(node_user.first, node_user.second, preceed_cnode);
|
||||
}
|
||||
manager->SetEdge(slice_cnode, 1, preceed_cnode->input(index));
|
||||
manager->SetEdge(preceed_cnode, index, slice_cnode);
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
* Prepose condition:
|
||||
* the softmax axis is not sliced
|
||||
*/
|
||||
bool SlicePreposePass::PreposeWithSoftmax(const FuncGraphPtr &graph, const CNodePtr &slice_cnode,
|
||||
const CNodePtr &softmax_cnode) {
|
||||
MS_ASSERT(graph != nullptr);
|
||||
MS_ASSERT(slice_cnode != nullptr);
|
||||
MS_ASSERT(softmax_cnode != nullptr);
|
||||
auto softmax_primc = GetValueNode<std::shared_ptr<PrimitiveC>>(softmax_cnode->input(0));
|
||||
if (softmax_primc == nullptr) {
|
||||
MS_LOG(ERROR) << "softmax_primc is nullptr";
|
||||
return false;
|
||||
}
|
||||
auto softmax_primt = softmax_primc->GetPrimitiveT();
|
||||
if (softmax_primt == nullptr || softmax_primt->value.AsSoftMax() == nullptr) {
|
||||
MS_LOG(ERROR) << "softmax_primt is nullptr";
|
||||
return false;
|
||||
}
|
||||
auto softmax_attr = softmax_primt->value.AsSoftMax();
|
||||
auto softmax_axis = softmax_attr->axis;
|
||||
auto shape = GetCNodeInputShape(softmax_cnode, 1);
|
||||
if (softmax_axis == -1) {
|
||||
if (shape.empty()) { // when softmax axis == -1, shape info is needed to determine whether slice can be preposed
|
||||
return false;
|
||||
}
|
||||
softmax_axis += shape.size();
|
||||
}
|
||||
|
||||
auto slice_t = GetSliceT(slice_cnode);
|
||||
MS_ASSERT(slice_t != nullptr);
|
||||
auto slice_axes = slice_t->axes;
|
||||
auto slice_begin = slice_t->begin;
|
||||
auto slice_size = slice_t->size;
|
||||
|
||||
for (size_t i = 0; i < slice_axes.size(); ++i) {
|
||||
if (slice_axes[i] == softmax_axis) {
|
||||
if (slice_begin[i] != 0) {
|
||||
return false;
|
||||
}
|
||||
if (slice_size[i] != -1) {
|
||||
if (shape.empty() || slice_axes[i] >= static_cast<int>(shape.size())) {
|
||||
return false;
|
||||
}
|
||||
if (slice_size[i] < shape[slice_axes[i]]) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
auto status = SwapSliceWithPreceed(graph, slice_cnode, softmax_cnode, 1);
|
||||
return status == RET_OK;
|
||||
}
|
||||
|
||||
bool SlicePreposePass::DoPrepose(const FuncGraphPtr &graph, const CNodePtr &slice_cnode,
|
||||
const CNodePtr &preceed_cnode) {
|
||||
MS_ASSERT(graph != nullptr);
|
||||
MS_ASSERT(slice_cnode != nullptr);
|
||||
MS_ASSERT(preceed_cnode != nullptr);
|
||||
auto preceed_node_type = GetCNodeType(preceed_cnode);
|
||||
switch (preceed_node_type) {
|
||||
case schema::PrimitiveType_SoftMax: {
|
||||
return PreposeWithSoftmax(graph, slice_cnode, preceed_cnode);
|
||||
}
|
||||
default: {
|
||||
MS_LOG(DEBUG) << "Node type " << preceed_node_type << " currently not support SlicePrepose";
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool SlicePreposePass::Run(const FuncGraphPtr &graph) {
|
||||
if (fmk_type != lite::converter::FmkType_TF && fmk_type != lite::converter::FmkType_TFLITE) {
|
||||
MS_LOG(INFO) << "The framework type of model should be tf/tflite.";
|
||||
return false;
|
||||
}
|
||||
MS_ASSERT(graph != nullptr);
|
||||
bool changed = false;
|
||||
while (true) {
|
||||
bool this_time_changed = false;
|
||||
auto node_list = TopoSort(graph->get_return());
|
||||
for (auto &node : node_list) {
|
||||
if (node->func_graph() != graph) {
|
||||
continue;
|
||||
}
|
||||
if (!utils::isa<CNodePtr>(node) || GetCNodeType(node) != schema::PrimitiveType_Slice) {
|
||||
continue;
|
||||
}
|
||||
auto slice_cnode = node->cast<CNodePtr>();
|
||||
if (slice_cnode->inputs().size() != lite::kDoubleNum) { // only support params from attrs now
|
||||
MS_LOG(INFO) << "SlicePrepose not support more than two inputs now";
|
||||
continue;
|
||||
}
|
||||
auto primt = GetSliceT(slice_cnode);
|
||||
if (primt == nullptr) {
|
||||
MS_LOG(ERROR) << "primitive_t of slice is nullptr";
|
||||
continue;
|
||||
}
|
||||
auto preceed_node = slice_cnode->input(1);
|
||||
if (preceed_node == nullptr) {
|
||||
MS_LOG(ERROR) << "preceed node is nullptr";
|
||||
continue;
|
||||
}
|
||||
auto output_tensor_num = GetOutputTensorNum(preceed_node);
|
||||
if (output_tensor_num > 1) {
|
||||
continue;
|
||||
}
|
||||
auto output_node_list = GetRealNodeUsedList(graph, utils::cast<AnfNodePtr>(preceed_node));
|
||||
if (output_node_list->size() > 1) { // referenced by multi nodes
|
||||
continue;
|
||||
} else {
|
||||
if (utils::isa<ParameterPtr>(preceed_node)) {
|
||||
/*
|
||||
* if preceed_node is parameter without default param, it's input placeholder, so we can't prepose
|
||||
* if preceed_node is parameter with default param, constant_folding will process it
|
||||
*/
|
||||
continue;
|
||||
}
|
||||
auto preceed_cnode = preceed_node->cast<CNodePtr>();
|
||||
if (preceed_cnode == nullptr) {
|
||||
MS_LOG(ERROR) << "preceed_cnode is nullptr";
|
||||
continue;
|
||||
}
|
||||
if (DoPrepose(graph, slice_cnode, preceed_cnode)) {
|
||||
this_time_changed = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (this_time_changed) {
|
||||
changed = true;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
return changed;
|
||||
}
|
||||
} // namespace mindspore::opt
|
@ -0,0 +1,54 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_LITE_TOOLS_OPTIMIZER_GRAPH_SLICE_PREPOSE_PASS_H_
|
||||
#define MINDSPORE_LITE_TOOLS_OPTIMIZER_GRAPH_SLICE_PREPOSE_PASS_H_
|
||||
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
#include <utility>
|
||||
#include "tools/converter/converter_flags.h"
|
||||
#include "backend/optimizer/common/pass.h"
|
||||
#include "include/errorcode.h"
|
||||
#include "mindspore/core/ir/manager.h"
|
||||
#include "schema/inner/model_generated.h"
|
||||
|
||||
using mindspore::lite::converter::FmkType;
|
||||
namespace mindspore::opt {
|
||||
using lite::RET_ERROR;
|
||||
using lite::RET_OK;
|
||||
using lite::STATUS;
|
||||
using TransactionPtr = std::shared_ptr<mindspore::FuncGraphTransaction>;
|
||||
using NodeUsedListPtr = std::shared_ptr<std::vector<std::pair<AnfNodePtr, int>>>;
|
||||
class SlicePreposePass : public Pass {
|
||||
public:
|
||||
SlicePreposePass() : Pass("slice_prepose_pass") {}
|
||||
~SlicePreposePass() override = default;
|
||||
bool Run(const FuncGraphPtr &graph) override;
|
||||
void SetFmkType(FmkType fmkType) { this->fmk_type = fmkType; }
|
||||
|
||||
private:
|
||||
schema::SliceT *GetSliceT(const CNodePtr &cnode);
|
||||
bool DoPrepose(const FuncGraphPtr &graph, const CNodePtr &slice_cnode, const CNodePtr &preceed_cnode);
|
||||
STATUS SwapSliceWithPreceed(const FuncGraphPtr &graph, const CNodePtr &slice_cnode, const CNodePtr &preceed_cnode,
|
||||
const int index, const TransactionPtr &tr = nullptr);
|
||||
bool PreposeWithSoftmax(const FuncGraphPtr &graph, const CNodePtr &slice_cnode, const CNodePtr &softmax_cnode);
|
||||
|
||||
private:
|
||||
FmkType fmk_type = lite::converter::FmkType_ONNX;
|
||||
};
|
||||
} // namespace mindspore::opt
|
||||
|
||||
#endif // MINDSPORE_LITE_TOOLS_OPTIMIZER_GRAPH_SLICE_PREPOSE_PASS_H_
|
Loading…
Reference in new issue