!250 Add nn.pad to support three modes
Merge pull request !250 from casgj/gaojing_new4pull/250/MERGE
commit
7ffb8bb19f
@ -0,0 +1,64 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
""" test nn pad """
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
import mindspore.nn as nn
|
||||
from mindspore.ops.composite import GradOperation
|
||||
from mindspore.common.api import ms_function
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, raw_paddings, mode):
|
||||
super(Net, self).__init__()
|
||||
self.pad = nn.Pad(raw_paddings, mode=mode)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x):
|
||||
return self.pad(x)
|
||||
|
||||
|
||||
class Grad(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(Grad, self).__init__()
|
||||
self.grad = GradOperation(name="get_all", get_all=True, sens_param=True)
|
||||
self.network = network
|
||||
|
||||
@ms_function
|
||||
def construct(self, x, grads):
|
||||
return self.grad(self.network)(x, grads)
|
||||
|
||||
|
||||
def test_pad_train():
|
||||
mode = 'CONSTANT'
|
||||
x = np.random.random(size=(2, 3)).astype(np.float32)
|
||||
raw_paddings = ((1, 1), (2, 2))
|
||||
grads = np.random.random(size=(4, 7)).astype(np.float32)
|
||||
grad = Grad(Net(raw_paddings, mode))
|
||||
output = grad(Tensor(x), Tensor(grads))
|
||||
print("=================output====================")
|
||||
print(output)
|
||||
|
||||
|
||||
def test_pad_infer():
|
||||
mode = 'CONSTANT'
|
||||
x = np.random.random(size=(2, 3)).astype(np.float32)
|
||||
raw_paddings = ((1, 1), (2, 2))
|
||||
net = Net(raw_paddings, mode)
|
||||
output = net(Tensor(x))
|
||||
print("=================output====================")
|
||||
print(output)
|
Loading…
Reference in new issue