!8587 fix example error.

From: @liangchenghui
Reviewed-by: @kingxian,@c_34
Signed-off-by: @c_34
pull/8587/MERGE
mindspore-ci-bot 4 years ago committed by Gitee
commit 80b5b86fe1

@ -371,7 +371,7 @@ class AvgPool1d(_PoolNd):
self.squeeze = P.Squeeze(2) self.squeeze = P.Squeeze(2)
def construct(self, x): def construct(self, x):
_shape_check(self.shape(x)) x = F.depend(x, _shape_check(self.shape(x)))
batch, channel, width = self.shape(x) batch, channel, width = self.shape(x)
if width == self.kernel_size[1]: if width == self.kernel_size[1]:
x = self.reduce_mean(x, 2) x = self.reduce_mean(x, 2)

@ -82,7 +82,8 @@ from .nn_ops import (LSTM, SGD, Adam, FusedSparseAdam, FusedSparseLazyAdam, Appl
ApplyRMSProp, ApplyCenteredRMSProp, BasicLSTMCell, InTopK, UniformCandidateSampler) ApplyRMSProp, ApplyCenteredRMSProp, BasicLSTMCell, InTopK, UniformCandidateSampler)
from . import _quant_ops from . import _quant_ops
from ._quant_ops import * from ._quant_ops import *
from .other_ops import (Assign, InplaceAssign, IOU, BoundingBoxDecode, BoundingBoxEncode, PopulationCount, from .other_ops import (Assign, InplaceAssign, IOU, BoundingBoxDecode, BoundingBoxEncode,
ConfusionMatrix, PopulationCount,
CheckValid, MakeRefKey, Partial, Depend, identity, CheckBprop, Push, Pull) CheckValid, MakeRefKey, Partial, Depend, identity, CheckBprop, Push, Pull)
from ._thor_ops import (CusBatchMatMul, CusCholeskyTrsm, CusFusedAbsMax1, CusImg2Col, CusMatMulCubeDenseLeft, from ._thor_ops import (CusBatchMatMul, CusCholeskyTrsm, CusFusedAbsMax1, CusImg2Col, CusMatMulCubeDenseLeft,
CusMatMulCubeFraczRightMul, CusMatMulCube, CusMatrixCombine, CusTranspose02314, CusMatMulCubeFraczRightMul, CusMatMulCube, CusMatrixCombine, CusTranspose02314,
@ -289,6 +290,7 @@ __all__ = [
'DepthwiseConv2dNative', 'DepthwiseConv2dNative',
'UnsortedSegmentSum', 'UnsortedSegmentSum',
'UnsortedSegmentMin', 'UnsortedSegmentMin',
'UnsortedSegmentMax',
'UnsortedSegmentProd', 'UnsortedSegmentProd',
"AllGather", "AllGather",
"AllReduce", "AllReduce",
@ -377,6 +379,7 @@ __all__ = [
"UniformCandidateSampler", "UniformCandidateSampler",
"LRN", "LRN",
"Mod", "Mod",
"ConfusionMatrix",
"PopulationCount", "PopulationCount",
"ParallelConcat", "ParallelConcat",
"Push", "Push",

@ -2146,12 +2146,12 @@ class Slice(PrimitiveWithInfer):
Slices a tensor in the specified shape. Slices a tensor in the specified shape.
Inputs: Inputs:
x (Tensor): The target tensor. - **x** (Tensor): The target tensor.
begin (tuple): The beginning of the slice. Only constant value is allowed. - **begin** (tuple): The beginning of the slice. Only constant value is allowed.
size (tuple): The size of the slice. Only constant value is allowed. - **size** (tuple): The size of the slice. Only constant value is allowed.
Returns: Outputs:
Tensor. Tensor, the shape is : input `size`, the data type is the same as input `x`.
Examples: Examples:
>>> data = Tensor(np.array([[[1, 1, 1], [2, 2, 2]], >>> data = Tensor(np.array([[[1, 1, 1], [2, 2, 2]],

@ -5427,7 +5427,7 @@ class Dropout(PrimitiveWithInfer):
Args: Args:
keep_prob (float): The keep rate, between 0 and 1, e.g. keep_prob = 0.9, keep_prob (float): The keep rate, between 0 and 1, e.g. keep_prob = 0.9,
means dropping out 10% of input units. means dropping out 10% of input units.
Inputs: Inputs:
- **input** (Tensor) - The input tensor. - **input** (Tensor) - The input tensor.
@ -5441,9 +5441,9 @@ class Dropout(PrimitiveWithInfer):
>>> x = Tensor((20, 16, 50, 50), mindspore.float32) >>> x = Tensor((20, 16, 50, 50), mindspore.float32)
>>> output, mask = dropout(x) >>> output, mask = dropout(x)
>>> print(output) >>> print(output)
[ 0. 32. 0. 0.] [0. 32. 0. 0.]
>>> print(mask) >>> print(mask)
[0. 1. 0. 0.] [0. 1. 0. 0.]
""" """
@prim_attr_register @prim_attr_register

@ -492,7 +492,12 @@ class ConfusionMatrix(PrimitiveWithInfer):
>>> confusion_matrix = P.ConfusionMatrix(4) >>> confusion_matrix = P.ConfusionMatrix(4)
>>> labels = Tensor([0, 1, 1, 3], mindspore.int32) >>> labels = Tensor([0, 1, 1, 3], mindspore.int32)
>>> predictions = Tensor([1, 2, 1, 3], mindspore.int32) >>> predictions = Tensor([1, 2, 1, 3], mindspore.int32)
>>> confusion_matrix(labels, predictions) >>> output = confusion_matrix(labels, predictions)
>>> print(output)
[[0 1 0 0
[0 1 1 0]
[0 0 0 0]
[0 0 0 1]]
""" """
@prim_attr_register @prim_attr_register

Loading…
Cancel
Save