|
|
|
@ -61,7 +61,6 @@ class StackedRNN(nn.Cell):
|
|
|
|
|
self.fc_weight = Tensor(np.random.random((hidden_size, num_class)).astype(np.float16))
|
|
|
|
|
self.fc_bias = Tensor(np.random.random(self.num_class).astype(np.float16))
|
|
|
|
|
|
|
|
|
|
self.cast = P.Cast()
|
|
|
|
|
self.reshape = P.Reshape()
|
|
|
|
|
self.transpose = P.Transpose()
|
|
|
|
|
self.matmul = nn.MatMul()
|
|
|
|
@ -118,6 +117,7 @@ class StackedRNNForGPU(nn.Cell):
|
|
|
|
|
self.transpose = P.Transpose()
|
|
|
|
|
|
|
|
|
|
def construct(self, x):
|
|
|
|
|
x = self.cast(x, mstype.float32)
|
|
|
|
|
x = self.transpose(x, (3, 0, 2, 1))
|
|
|
|
|
x = self.reshape(x, (-1, self.batch_size, self.input_size))
|
|
|
|
|
output, _ = self.lstm(x, (self.h, self.c))
|
|
|
|
|