!9168 Add ApplyAdagrad for cpu
From: @yang_chun Reviewed-by: @wuxuejian,@c_34 Signed-off-by: @c_34pull/9168/MERGE
commit
886c551a0b
@ -0,0 +1,111 @@
|
|||||||
|
/**
|
||||||
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include "backend/kernel_compiler/cpu/apply_adagrad_cpu_kernel.h"
|
||||||
|
|
||||||
|
#include <thread>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
|
namespace mindspore {
|
||||||
|
namespace kernel {
|
||||||
|
namespace {
|
||||||
|
constexpr size_t kSizeFloat16 = 2;
|
||||||
|
constexpr size_t kSizeFloat32 = 4;
|
||||||
|
constexpr size_t kInputSize = 4;
|
||||||
|
constexpr size_t kOutputSize = 2;
|
||||||
|
} // namespace
|
||||||
|
void ApplyAdagradCPUKernel::InitKernel(const CNodePtr &kernel_node) {
|
||||||
|
MS_EXCEPTION_IF_NULL(kernel_node);
|
||||||
|
update_slots_ = AnfAlgo::GetNodeAttr<bool>(kernel_node, "update_slots");
|
||||||
|
dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
bool ApplyAdagradCPUKernel::Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> & /*workspace*/,
|
||||||
|
const std::vector<AddressPtr> &outputs) {
|
||||||
|
CheckParam(inputs, outputs);
|
||||||
|
|
||||||
|
if (dtype_ == kNumberTypeFloat16) {
|
||||||
|
LaunchKernel<float16>(inputs);
|
||||||
|
} else if (dtype_ == kNumberTypeFloat32) {
|
||||||
|
LaunchKernel<float>(inputs);
|
||||||
|
}
|
||||||
|
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
void ApplyAdagradCPUKernel::CheckParam(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs) {
|
||||||
|
// inputs: var, accum, lr, gradient
|
||||||
|
if (inputs.size() != kInputSize) {
|
||||||
|
MS_LOG(EXCEPTION) << "Input number is " << inputs.size() << ", but ApplyAdagrad needs 4 inputs.";
|
||||||
|
}
|
||||||
|
|
||||||
|
// outputs: var, accum
|
||||||
|
if (outputs.size() != kOutputSize) {
|
||||||
|
MS_LOG(EXCEPTION) << "Output number is " << outputs.size() << ", but ApplyAdagrad needs 2 outputs.";
|
||||||
|
}
|
||||||
|
|
||||||
|
if (inputs[0]->size != inputs[1]->size || inputs[0]->size != inputs[3]->size) {
|
||||||
|
MS_LOG(EXCEPTION) << "Error input data size!";
|
||||||
|
}
|
||||||
|
|
||||||
|
if (inputs[2]->size != kSizeFloat16 && inputs[2]->size != kSizeFloat32) {
|
||||||
|
MS_LOG(EXCEPTION) << "The attribute lr and grad must be float16 or float32!";
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
void ApplyAdagradCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs) {
|
||||||
|
auto var = reinterpret_cast<T *>(inputs[0]->addr);
|
||||||
|
auto accum = reinterpret_cast<T *>(inputs[1]->addr);
|
||||||
|
auto lr = reinterpret_cast<T *>(inputs[2]->addr);
|
||||||
|
auto gradient = reinterpret_cast<T *>(inputs[3]->addr);
|
||||||
|
|
||||||
|
// multithreading
|
||||||
|
size_t length = inputs[0]->size / sizeof(T);
|
||||||
|
size_t max_thread_num = std::thread::hardware_concurrency();
|
||||||
|
size_t use_thread_num = length < 128 * max_thread_num ? std::ceil(length / 128.0) : max_thread_num;
|
||||||
|
std::vector<std::thread> threads;
|
||||||
|
threads.reserve(use_thread_num);
|
||||||
|
size_t start = 0;
|
||||||
|
size_t batch_size = (length + use_thread_num - 1) / use_thread_num;
|
||||||
|
|
||||||
|
while (start < length) {
|
||||||
|
size_t end = (start + batch_size) > length ? length : (start + batch_size);
|
||||||
|
threads.emplace_back(
|
||||||
|
std::thread(&ApplyAdagradCPUKernel::LaunchApplyAdagrad<T>, this, var, accum, *lr, gradient, start, end));
|
||||||
|
start += batch_size;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (auto &it : threads) {
|
||||||
|
it.join();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
void ApplyAdagradCPUKernel::LaunchApplyAdagrad(T *var, T *accum, T lr, T *gradient, size_t start, size_t end) {
|
||||||
|
const T one = T(1);
|
||||||
|
const T eps = T(1e-6);
|
||||||
|
for (size_t i = start; i < end; ++i) {
|
||||||
|
// update accum: accum += grad * grad
|
||||||
|
if (update_slots_) {
|
||||||
|
accum[i] += gradient[i] * gradient[i];
|
||||||
|
}
|
||||||
|
// update var: var -= lr * grad * \frac{1}{\sqrt{accum}}
|
||||||
|
var[i] -= lr * gradient[i] * (one / sqrt(accum[i] + eps));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} // namespace kernel
|
||||||
|
} // namespace mindspore
|
@ -0,0 +1,67 @@
|
|||||||
|
/**
|
||||||
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_APPLY_ADAGRAD_CPU_KERNEL_H_
|
||||||
|
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_APPLY_ADAGRAD_CPU_KERNEL_H_
|
||||||
|
|
||||||
|
#include <thread>
|
||||||
|
#include <vector>
|
||||||
|
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
|
||||||
|
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
|
||||||
|
|
||||||
|
namespace mindspore {
|
||||||
|
namespace kernel {
|
||||||
|
class ApplyAdagradCPUKernel : public CPUKernel {
|
||||||
|
public:
|
||||||
|
ApplyAdagradCPUKernel() = default;
|
||||||
|
~ApplyAdagradCPUKernel() override = default;
|
||||||
|
|
||||||
|
void InitKernel(const CNodePtr &kernel_node) override;
|
||||||
|
|
||||||
|
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> & /*workspace*/,
|
||||||
|
const std::vector<AddressPtr> &outputs) override;
|
||||||
|
|
||||||
|
private:
|
||||||
|
static void CheckParam(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs);
|
||||||
|
template <typename T>
|
||||||
|
void LaunchKernel(const std::vector<AddressPtr> &inputs);
|
||||||
|
template <typename T>
|
||||||
|
void LaunchApplyAdagrad(T *var, T *accum, T lr, T *gradient, size_t start, size_t end);
|
||||||
|
bool update_slots_{true};
|
||||||
|
TypeId dtype_{kTypeUnknown};
|
||||||
|
};
|
||||||
|
|
||||||
|
MS_REG_CPU_KERNEL(ApplyAdagrad,
|
||||||
|
KernelAttr()
|
||||||
|
.AddInputAttr(kNumberTypeFloat32)
|
||||||
|
.AddInputAttr(kNumberTypeFloat32)
|
||||||
|
.AddInputAttr(kNumberTypeFloat32)
|
||||||
|
.AddInputAttr(kNumberTypeFloat32)
|
||||||
|
.AddOutputAttr(kNumberTypeFloat32)
|
||||||
|
.AddOutputAttr(kNumberTypeFloat32),
|
||||||
|
ApplyAdagradCPUKernel);
|
||||||
|
|
||||||
|
MS_REG_CPU_KERNEL(ApplyAdagrad,
|
||||||
|
KernelAttr()
|
||||||
|
.AddInputAttr(kNumberTypeFloat16)
|
||||||
|
.AddInputAttr(kNumberTypeFloat16)
|
||||||
|
.AddInputAttr(kNumberTypeFloat16)
|
||||||
|
.AddInputAttr(kNumberTypeFloat16)
|
||||||
|
.AddOutputAttr(kNumberTypeFloat16)
|
||||||
|
.AddOutputAttr(kNumberTypeFloat16),
|
||||||
|
ApplyAdagradCPUKernel);
|
||||||
|
} // namespace kernel
|
||||||
|
} // namespace mindspore
|
||||||
|
#endif
|
@ -0,0 +1,61 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
import mindspore.context as context
|
||||||
|
import mindspore.nn as nn
|
||||||
|
from mindspore import Tensor, Parameter
|
||||||
|
from mindspore.ops import operations as P
|
||||||
|
import mindspore.common.dtype as mstype
|
||||||
|
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||||
|
|
||||||
|
var_np = np.random.rand(3, 3).astype(np.float32)
|
||||||
|
accum_np = np.random.rand(3, 3).astype(np.float32)
|
||||||
|
|
||||||
|
|
||||||
|
class Net(nn.Cell):
|
||||||
|
def __init__(self):
|
||||||
|
super(Net, self).__init__()
|
||||||
|
self.apply_adagrad = P.ApplyAdagrad()
|
||||||
|
self.var = Parameter(Tensor(var_np), name="var")
|
||||||
|
self.accum = Parameter(Tensor(accum_np), name="accum")
|
||||||
|
|
||||||
|
def construct(self, lr, grad):
|
||||||
|
self.apply_adagrad(self.var, self.accum, lr, grad)
|
||||||
|
return self.var, self.accum
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_x86_cpu
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
def test_apply_adagrad():
|
||||||
|
# numpy op
|
||||||
|
grident_np = np.random.rand(3, 3).astype(np.float32)
|
||||||
|
expect_accum_np = accum_np + grident_np * grident_np
|
||||||
|
expect_var_np = var_np - (0.001 * grident_np * (1 / np.sqrt(expect_accum_np + 1e-6)))
|
||||||
|
|
||||||
|
net = Net()
|
||||||
|
lr = Tensor(0.001, mstype.float32)
|
||||||
|
grad = Tensor(grident_np)
|
||||||
|
out = net(lr, grad)
|
||||||
|
res_var_mindspore = out[0].asnumpy()
|
||||||
|
res_accum_mindspore = out[1].asnumpy()
|
||||||
|
eps = np.array([1e-6 for i in range(9)]).reshape(3, 3)
|
||||||
|
|
||||||
|
assert np.all(expect_var_np - res_var_mindspore < eps)
|
||||||
|
assert np.all(expect_accum_np - res_accum_mindspore < eps)
|
Loading…
Reference in new issue