parent
a834a6308e
commit
8873f9dc7e
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,221 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
from mindspore import Tensor
|
||||
import mindspore.nn as nn
|
||||
import mindspore.context as context
|
||||
from mindspore.ops.operations import _quant_ops as Q
|
||||
|
||||
context.set_context(device_target='GPU', device_id=0)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, num_bits=8, narrow_range=False):
|
||||
super(Net, self).__init__()
|
||||
self.op = Q.FakeQuantPerLayerGrad(num_bits=num_bits, narrow_range=narrow_range)
|
||||
|
||||
def construct(self, dout, x, minq, maxq):
|
||||
return self.op(dout, x, minq, maxq)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_fake_quant_grad1():
|
||||
# WithArgsGradient RegularRange
|
||||
dout = np.random.uniform(-1, 1, size=[6]).astype('float32')
|
||||
x = np.array([-0.26, -0.25, -0.24, 0.0, 63.5, 63.6]).astype(np.float32)
|
||||
min_val = np.array([-0.125]).reshape(1).astype(np.float32)
|
||||
max_val = np.array([63.625]).reshape(1).astype(np.float32)
|
||||
expect = np.array([0.0, dout[1], dout[2], dout[3], dout[4], 0.0]).astype(np.float32)
|
||||
|
||||
net = Net(num_bits=8, narrow_range=False)
|
||||
output = net(Tensor(dout), Tensor(x), Tensor(min_val), Tensor(max_val))
|
||||
|
||||
error = np.ones(shape=expect.shape) * 1.0e-5
|
||||
diff = output.asnumpy().flatten() - expect
|
||||
print("output: ", output)
|
||||
print("expect: ", expect)
|
||||
assert np.all(np.abs(diff) < error)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_fake_quant_grad2():
|
||||
# WithArgsGradient NarrowRange
|
||||
dout = np.random.uniform(-1, 1, size=[6]).astype('float32')
|
||||
x = np.array([-0.26, -0.25, -0.24, 0.0, 63.25, 63.3]).astype(np.float32)
|
||||
min_val = np.array([-0.125]).reshape(1).astype(np.float32)
|
||||
max_val = np.array([63.375]).reshape(1).astype(np.float32)
|
||||
expect = np.array([0.0, dout[1], dout[2], dout[3], dout[4], 0.0]).astype(np.float32)
|
||||
|
||||
net = Net(num_bits=8, narrow_range=True)
|
||||
output = net(Tensor(dout), Tensor(x), Tensor(min_val), Tensor(max_val))
|
||||
|
||||
error = np.ones(shape=expect.shape) * 1.0e-5
|
||||
diff = output.asnumpy().flatten() - expect
|
||||
print("output: ", output)
|
||||
print("expect: ", expect)
|
||||
assert np.all(np.abs(diff) < error)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_fake_quant_grad3():
|
||||
# WithArgsGradient_4Bits_RegularRange
|
||||
dout = np.random.uniform(-1, 1, size=[6]).astype('float32')
|
||||
x = np.array([-0.6, -0.5, -0.4, 0.0, 7.0, 7.1]).astype(np.float32)
|
||||
min_val = np.array([-0.4]).reshape(1).astype(np.float32)
|
||||
max_val = np.array([7.1]).reshape(1).astype(np.float32)
|
||||
expect = np.array([0.0, dout[1], dout[2], dout[3], dout[4], 0.0]).astype(np.float32)
|
||||
|
||||
net = Net(num_bits=4, narrow_range=False)
|
||||
output = net(Tensor(dout), Tensor(x), Tensor(min_val), Tensor(max_val))
|
||||
|
||||
error = np.ones(shape=expect.shape) * 1.0e-5
|
||||
diff = output.asnumpy().flatten() - expect
|
||||
print("output: ", output)
|
||||
print("expect: ", expect)
|
||||
assert np.all(np.abs(diff) < error)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_fake_quant_grad4():
|
||||
# WithArgsGradient_4Bits_NarrowRange
|
||||
dout = np.random.uniform(-1, 1, size=[6]).astype('float32')
|
||||
x = np.array([-0.6, -0.5, -0.4, 0.0, 6.5, 6.6]).astype(np.float32)
|
||||
min_val = np.array([-0.4]).reshape(1).astype(np.float32)
|
||||
max_val = np.array([6.6]).reshape(1).astype(np.float32)
|
||||
expect = np.array([0.0, dout[1], dout[2], dout[3], dout[4], 0.0]).astype(np.float32)
|
||||
|
||||
net = Net(num_bits=4, narrow_range=True)
|
||||
output = net(Tensor(dout), Tensor(x), Tensor(min_val), Tensor(max_val))
|
||||
|
||||
error = np.ones(shape=expect.shape) * 1.0e-5
|
||||
diff = output.asnumpy().flatten() - expect
|
||||
print("output: ", output)
|
||||
print("expect: ", expect)
|
||||
assert np.all(np.abs(diff) < error)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_fake_quant_grad5():
|
||||
# FakeQuantWithMinMaxVarsGradient
|
||||
dout = np.random.uniform(-1, 1, size=[6]).astype('float32')
|
||||
x = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0]).astype(np.float32)
|
||||
min_val = np.array([0.0]).reshape(1).astype(np.float32)
|
||||
max_val = np.array([0.0]).reshape(1).astype(np.float32)
|
||||
expect = dout
|
||||
|
||||
net = Net(num_bits=8, narrow_range=True)
|
||||
output = net(Tensor(dout), Tensor(x), Tensor(min_val), Tensor(max_val))
|
||||
|
||||
error = np.ones(shape=expect.shape) * 1.0e-5
|
||||
diff = output.asnumpy().flatten() - expect
|
||||
print("output: ", output)
|
||||
print("expect: ", expect)
|
||||
assert np.all(np.abs(diff) < error)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_fake_quant_grad6():
|
||||
# WithVarsGradient_RegularRange
|
||||
dout = np.random.uniform(-1, 1, size=[6]).astype('float32')
|
||||
x = np.array([-0.26, -0.25, -0.24, 0.0, 63.5, 63.6]).astype(np.float32)
|
||||
min_val = np.array([-0.125]).reshape(1).astype(np.float32)
|
||||
max_val = np.array([63.625]).reshape(1).astype(np.float32)
|
||||
expect = np.array([0.0, dout[1], dout[2], dout[3], dout[4], 0.0]).astype(np.float32)
|
||||
|
||||
net = Net(num_bits=8, narrow_range=False)
|
||||
output = net(Tensor(dout), Tensor(x), Tensor(min_val), Tensor(max_val))
|
||||
|
||||
error = np.ones(shape=expect.shape) * 1.0e-5
|
||||
diff = output.asnumpy().flatten() - expect
|
||||
print("output: ", output)
|
||||
print("expect: ", expect)
|
||||
assert np.all(np.abs(diff) < error)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_fake_quant_grad7():
|
||||
# WithVarsGradient_NarrowRange
|
||||
dout = np.random.uniform(-1, 1, size=[6]).astype('float32')
|
||||
x = np.array([-0.26, -0.25, -0.24, 0.0, 63.25, 63.3]).astype(np.float32)
|
||||
min_val = np.array([-0.125]).reshape(1).astype(np.float32)
|
||||
max_val = np.array([63.375]).reshape(1).astype(np.float32)
|
||||
expect = np.array([0.0, dout[1], dout[2], dout[3], dout[4], 0.0]).astype(np.float32)
|
||||
|
||||
net = Net(num_bits=8, narrow_range=True)
|
||||
output = net(Tensor(dout), Tensor(x), Tensor(min_val), Tensor(max_val))
|
||||
|
||||
error = np.ones(shape=expect.shape) * 1.0e-5
|
||||
diff = output.asnumpy().flatten() - expect
|
||||
print("output: ", output)
|
||||
print("expect: ", expect)
|
||||
assert np.all(np.abs(diff) < error)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_fake_quant_grad8():
|
||||
# WithVarsGradient_4Bits_RegularRange
|
||||
dout = np.random.uniform(-1, 1, size=[6]).astype('float32')
|
||||
x = np.array([-0.6, -0.5, -0.4, 0.0, 7.0, 7.1]).astype(np.float32)
|
||||
min_val = np.array([-0.4]).reshape(1).astype(np.float32)
|
||||
max_val = np.array([7.1]).reshape(1).astype(np.float32)
|
||||
expect = np.array([0.0, dout[1], dout[2], dout[3], dout[4], 0.0]).astype(np.float32)
|
||||
|
||||
net = Net(num_bits=4, narrow_range=False)
|
||||
output = net(Tensor(dout), Tensor(x), Tensor(min_val), Tensor(max_val))
|
||||
|
||||
error = np.ones(shape=expect.shape) * 1.0e-5
|
||||
diff = output.asnumpy().flatten() - expect
|
||||
print("output: ", output)
|
||||
print("expect: ", expect)
|
||||
assert np.all(np.abs(diff) < error)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_fake_quant_grad9():
|
||||
# WithVarsGradient_4Bits_NarrowRange
|
||||
dout = np.random.uniform(-1, 1, size=[6]).astype('float32')
|
||||
x = np.array([-0.6, -0.5, -0.4, 0.0, 6.5, 6.6]).astype(np.float32)
|
||||
min_val = np.array([-0.4]).reshape(1).astype(np.float32)
|
||||
max_val = np.array([6.6]).reshape(1).astype(np.float32)
|
||||
expect = np.array([0.0, dout[1], dout[2], dout[3], dout[4], 0.0]).astype(np.float32)
|
||||
|
||||
net = Net(num_bits=4, narrow_range=True)
|
||||
output = net(Tensor(dout), Tensor(x), Tensor(min_val), Tensor(max_val))
|
||||
|
||||
error = np.ones(shape=expect.shape) * 1.0e-5
|
||||
diff = output.asnumpy().flatten() - expect
|
||||
print("output: ", output)
|
||||
print("expect: ", expect)
|
||||
assert np.all(np.abs(diff) < error)
|
Loading…
Reference in new issue