parent
782cac9119
commit
8b3823b22c
@ -0,0 +1,64 @@
|
|||||||
|
/**
|
||||||
|
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
#include "backend/optimizer/graph_kernel/optimize_matmul.h"
|
||||||
|
#include <tuple>
|
||||||
|
#include "backend/session/anf_runtime_algorithm.h"
|
||||||
|
#include "backend/kernel_compiler/common_utils.h"
|
||||||
|
#include "backend/optimizer/graph_kernel/graph_kernel_helper.h"
|
||||||
|
|
||||||
|
namespace mindspore {
|
||||||
|
namespace opt {
|
||||||
|
/* MatMul supports fp32 bias, so remove the redundant cast when cast only used by MatMul
|
||||||
|
*
|
||||||
|
* %0 = cast(bias_fp32, fp16)
|
||||||
|
* %1 = MatMul(A_fp16, B_fp16, %0)
|
||||||
|
* ------>
|
||||||
|
* %1 = MatMul(A_fp16, B_fp16, bias_fp32)
|
||||||
|
*/
|
||||||
|
bool OptimizeMatmul::Run(const FuncGraphPtr &func_graph) {
|
||||||
|
MS_EXCEPTION_IF_NULL(func_graph);
|
||||||
|
auto mng = func_graph->manager();
|
||||||
|
if (mng == nullptr) {
|
||||||
|
mng = Manage(func_graph, true);
|
||||||
|
func_graph->set_manager(mng);
|
||||||
|
}
|
||||||
|
auto changed = false;
|
||||||
|
auto nodes = TopoSort(func_graph->get_return());
|
||||||
|
for (auto node : nodes) {
|
||||||
|
if (!IsPrimitiveCNode(node, prim::kPrimMatMul)) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
auto cnode = node->cast<CNodePtr>();
|
||||||
|
if (cnode->size() != 4) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
auto cast_node = cnode->input(3);
|
||||||
|
if (!IsPrimitiveCNode(cast_node, prim::kPrimCast)) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
auto cast_input_type = AnfAlgo::GetInputDeviceDataType(cast_node, 0);
|
||||||
|
auto cast_output_type = AnfAlgo::GetOutputDeviceDataType(cast_node, 0);
|
||||||
|
if (cast_input_type == kNumberTypeFloat32 && cast_output_type == kNumberTypeFloat16 &&
|
||||||
|
mng->node_users()[cast_node].size() == 1) {
|
||||||
|
mng->Replace(cast_node, (cast_node->cast<CNodePtr>())->input(1));
|
||||||
|
changed = true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return changed;
|
||||||
|
}
|
||||||
|
} // namespace opt
|
||||||
|
} // namespace mindspore
|
@ -0,0 +1,36 @@
|
|||||||
|
/**
|
||||||
|
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
#ifndef MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GRAPH_KERNEL_OPTIMIZE_MATMUL_H_
|
||||||
|
#define MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GRAPH_KERNEL_OPTIMIZE_MATMUL_H_
|
||||||
|
|
||||||
|
#include <map>
|
||||||
|
#include <memory>
|
||||||
|
|
||||||
|
#include "backend/optimizer/common/pass.h"
|
||||||
|
#include "ir/func_graph.h"
|
||||||
|
|
||||||
|
namespace mindspore {
|
||||||
|
namespace opt {
|
||||||
|
class OptimizeMatmul : public Pass {
|
||||||
|
public:
|
||||||
|
OptimizeMatmul() : Pass("optimize_matmul") {}
|
||||||
|
~OptimizeMatmul() override = default;
|
||||||
|
bool Run(const FuncGraphPtr &graph) override;
|
||||||
|
};
|
||||||
|
using OptimizeMatmulPtr = std::shared_ptr<OptimizeMatmul>;
|
||||||
|
} // namespace opt
|
||||||
|
} // namespace mindspore
|
||||||
|
#endif // MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GRAPH_KERNEL_OPTIMIZE_MATMUL_H_
|
@ -0,0 +1,60 @@
|
|||||||
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import pytest
|
||||||
|
import mindspore.context as context
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.nn import Cell
|
||||||
|
import mindspore.ops.operations as P
|
||||||
|
from mindspore.common import dtype as mstype
|
||||||
|
|
||||||
|
class Net(Cell):
|
||||||
|
def __init__(self):
|
||||||
|
super(Net, self).__init__()
|
||||||
|
self.matmul = P.MatMul(transpose_a=True, transpose_b=True)
|
||||||
|
self.add = P.BiasAdd()
|
||||||
|
self.cast = P.Cast()
|
||||||
|
|
||||||
|
def construct(self, x, y, b):
|
||||||
|
xy = self.matmul(x, y)
|
||||||
|
b16 = self.cast(b, mstype.float16)
|
||||||
|
res = self.add(xy, b16)
|
||||||
|
return self.cast(res, mstype.float32)
|
||||||
|
|
||||||
|
def get_output(i0, i1, i2, enable_graph_kernel=False):
|
||||||
|
if enable_graph_kernel:
|
||||||
|
context.set_context(enable_graph_kernel=True, save_graphs=False)
|
||||||
|
net = Net()
|
||||||
|
output = net(i0, i1, i2)
|
||||||
|
return output
|
||||||
|
|
||||||
|
def test_basic():
|
||||||
|
i0 = Tensor(np.random.normal(1, 0.01, [800, 96]).astype(np.float16))
|
||||||
|
i1 = Tensor(np.random.normal(1, 0.01, [128, 800]).astype(np.float16))
|
||||||
|
i2 = Tensor(np.random.normal(100, 0.1, [128,]).astype(np.float32))
|
||||||
|
expect = get_output(i0, i1, i2, False)
|
||||||
|
output = get_output(i0, i1, i2, True)
|
||||||
|
expect_np = expect.asnumpy().copy()
|
||||||
|
output_np = output.asnumpy().copy()
|
||||||
|
assert np.allclose(expect_np, output_np, 1.e-4, 1.e-7)
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_arm_ascend_training
|
||||||
|
@pytest.mark.platform_x86_ascend_training
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
def test_basic_ascend():
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||||
|
test_basic()
|
Loading…
Reference in new issue