|
|
@ -24,7 +24,7 @@ from mindspore.common import dtype as mstype
|
|
|
|
import mindspore.nn as nn
|
|
|
|
import mindspore.nn as nn
|
|
|
|
from mindspore.nn.metrics import Accuracy
|
|
|
|
from mindspore.nn.metrics import Accuracy
|
|
|
|
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
|
|
|
|
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
|
|
|
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
|
|
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net, export
|
|
|
|
from mindspore.train import Model
|
|
|
|
from mindspore.train import Model
|
|
|
|
from mindspore.train.quant import quant
|
|
|
|
from mindspore.train.quant import quant
|
|
|
|
from mindspore.train.quant.quant_utils import load_nonquant_param_into_quant_net
|
|
|
|
from mindspore.train.quant.quant_utils import load_nonquant_param_into_quant_net
|
|
|
@ -136,7 +136,7 @@ def export_lenet():
|
|
|
|
|
|
|
|
|
|
|
|
# export network
|
|
|
|
# export network
|
|
|
|
inputs = Tensor(np.ones([1, 1, cfg.image_height, cfg.image_width]), mstype.float32)
|
|
|
|
inputs = Tensor(np.ones([1, 1, cfg.image_height, cfg.image_width]), mstype.float32)
|
|
|
|
quant.export(network, inputs, file_name="lenet_quant", file_format='MINDIR')
|
|
|
|
export(network, inputs, file_name="lenet_quant", file_format='MINDIR', quant_mode='AUTO')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
@pytest.mark.level0
|
|
|
|