parent
29e21479a4
commit
8e0343830e
@ -0,0 +1,48 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""Utitly functions to help distribution class."""
|
||||||
|
import numpy as np
|
||||||
|
from mindspore.ops import operations as P
|
||||||
|
|
||||||
|
def log_by_step(input_x):
|
||||||
|
"""
|
||||||
|
Log op on Ascend is calculated as log(abs(x)).
|
||||||
|
Fix this with putting negative values as nan.
|
||||||
|
"""
|
||||||
|
select = P.Select()
|
||||||
|
log = P.Log()
|
||||||
|
lessequal = P.LessEqual()
|
||||||
|
fill = P.Fill()
|
||||||
|
dtype = P.DType()
|
||||||
|
shape = P.Shape()
|
||||||
|
|
||||||
|
nonpos_x = lessequal(input_x, 0.0)
|
||||||
|
log_x = log(input_x)
|
||||||
|
nan = fill(dtype(input_x), shape(input_x), np.nan)
|
||||||
|
result = select(nonpos_x, nan, log_x)
|
||||||
|
return result
|
||||||
|
|
||||||
|
def log1p_by_step(x):
|
||||||
|
"""
|
||||||
|
Log1p ops on GPU device or when device_target == GPU.
|
||||||
|
"""
|
||||||
|
return log_by_step(x + 1.0)
|
||||||
|
|
||||||
|
def expm1_by_step(input_x):
|
||||||
|
"""
|
||||||
|
Expm1 ops under GPU context.
|
||||||
|
"""
|
||||||
|
exp = P.Exp()
|
||||||
|
return exp(input_x) - 1.0
|
Loading…
Reference in new issue