Add crop fp16 ops

pull/6987/head
liuwenhao4 4 years ago
parent 8f55187492
commit 900dfe5cba

@ -0,0 +1,153 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "nnacl/fp16/crop_fp16.h"
#include <string.h>
#include "nnacl/crop_parameter.h"
void Crop(const float16_t *input, float16_t *output, int task_id, CropParameter *para) {
int input_dim = para->input_dim_;
switch (input_dim) {
case 1:
Crop1D(input, output, task_id, para);
break;
case 2:
Crop2D(input, output, task_id, para);
break;
case 3:
Crop3D(input, output, task_id, para);
break;
case 4:
Crop4D(input, output, task_id, para);
break;
}
}
void Crop1D(const float16_t *input, float16_t *output, int task_id, CropParameter *para) {
const int out_batch = para->out_shape_[0];
const int thread_count = para->thread_count_;
int64_t task_id_stride = thread_count > 1 ? UP_DIV(out_batch, thread_count) : out_batch;
if (task_id_stride <= 0) {
return;
}
int n = task_id * task_id_stride;
if (n >= out_batch) {
return;
}
const float16_t *in_ptr = input + n + para->in_offset_[0];
float16_t *out_ptr = output + n;
int64_t out_dist_stride = MSMIN(out_batch - task_id * task_id_stride, task_id_stride);
memcpy(out_ptr, in_ptr, sizeof(float16_t) * out_dist_stride);
}
void Crop2D(const float16_t *input, float16_t *output, int task_id, CropParameter *para) {
const int in_height = para->in_shape_[1];
const int out_batch = para->out_shape_[0];
const int out_height = para->out_shape_[1];
const int thread_count = para->thread_count_;
int64_t task_id_stride = thread_count > 1 ? UP_DIV(out_height, thread_count) : out_height;
if (task_id_stride <= 0) {
return;
}
for (int n = 0; n < out_batch; n++) {
int h = task_id * task_id_stride;
if (h >= out_height) {
return;
}
const float16_t *in_ptr = input + (n + para->in_offset_[0]) * in_height + h + para->in_offset_[1];
float16_t *out_ptr = output + n * out_height + h;
int64_t out_dist_stride = MSMIN(out_height - task_id * task_id_stride, task_id_stride);
memcpy(out_ptr, in_ptr, sizeof(float16_t) * out_dist_stride);
}
}
void Crop3D(const float16_t *input, float16_t *output, int task_id, CropParameter *para) {
const int in_height = para->in_shape_[1];
const int in_width = para->in_shape_[2];
const int out_batch = para->out_shape_[0];
const int out_height = para->out_shape_[1];
const int out_width = para->out_shape_[2];
const int thread_count = para->thread_count_;
int64_t task_id_stride = thread_count > 1 ? UP_DIV(out_height, thread_count) : out_height;
if (task_id_stride <= 0) {
return;
}
const int in_stride_h = in_width;
const int in_stride_n = in_stride_h * in_height;
const int out_stride_h = out_width;
const int out_stride_n = out_stride_h * out_height;
for (int n = 0; n < out_batch; n++) {
for (int t = 0; t < task_id_stride; t++) {
int h = t + task_id * task_id_stride;
if (h >= out_height) {
break;
}
const float16_t *in_ptr =
input + (n + para->in_offset_[0]) * in_stride_n + (h + para->in_offset_[1]) * in_stride_h + para->in_offset_[2];
float16_t *out_ptr = output + n * out_stride_n + h * out_stride_h;
memcpy(out_ptr, in_ptr, sizeof(float16_t) * out_width);
}
}
}
void Crop4D(const float16_t *input, float16_t *output, int task_id, CropParameter *para) {
const int in_height = para->in_shape_[1];
const int in_width = para->in_shape_[2];
const int in_channel = para->in_shape_[3];
const int out_batch = para->out_shape_[0];
const int out_height = para->out_shape_[1];
const int out_width = para->out_shape_[2];
const int out_channel = para->out_shape_[3];
const int thread_count = para->thread_count_;
int64_t task_id_stride = thread_count > 1 ? UP_DIV(out_height, thread_count) : out_height;
if (task_id_stride <= 0) {
return;
}
const int in_stride_w = in_channel;
const int in_stride_h = in_channel * in_width;
const int in_stride_n = in_stride_h * in_height;
const int out_stride_w = out_channel;
const int out_stride_h = out_channel * out_width;
const int out_stride_n = out_stride_h * out_height;
for (int n = 0; n < out_batch; n++) {
for (int t = 0; t < task_id_stride; t++) {
int h = t + task_id * task_id_stride;
if (h >= out_height) {
break;
}
for (int w = 0; w < out_width; w++) {
const float16_t *in_ptr = input + (n + para->in_offset_[0]) * in_stride_n +
(h + para->in_offset_[1]) * in_stride_h + (w + para->in_offset_[2]) * in_stride_w +
para->in_offset_[3];
float16_t *out_ptr = output + n * out_stride_n + h * out_stride_h + w * out_stride_w;
memcpy(out_ptr, in_ptr, sizeof(float16_t) * out_channel);
}
}
}
}

@ -0,0 +1,36 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_NNACL_FP16_CROP_FP16_H_
#define MINDSPORE_LITE_NNACL_FP16_CROP_FP16_H_
#include <arm_neon.h>
#include "nnacl/op_base.h"
#include "nnacl/crop_parameter.h"
#ifdef __cplusplus
extern "C" {
#endif
void Crop(const float16_t *input, float16_t *output, int task_id, CropParameter *para);
void Crop1D(const float16_t *input, float16_t *output, int task_id, CropParameter *para);
void Crop2D(const float16_t *input, float16_t *output, int task_id, CropParameter *para);
void Crop3D(const float16_t *input, float16_t *output, int task_id, CropParameter *para);
void Crop4D(const float16_t *input, float16_t *output, int task_id, CropParameter *para);
#ifdef __cplusplus
}
#endif
#endif // MINDSPORE_LITE_NNACL_FP16_CROP_FP16_H_

@ -54,6 +54,58 @@ kernel::LiteKernel *CpuCropInt8KernelCreator(const std::vector<lite::Tensor *> &
return kernel;
}
int CropBaseCPUKernel::ReSize() {
auto *input_tensor = in_tensors_.at(kInputIndex);
auto input_shape = input_tensor->shape();
size_t input_dim = input_shape.size();
crop_para_->in_shape_ = reinterpret_cast<int *>(malloc(input_dim * sizeof(int)));
if (crop_para_->in_shape_ == nullptr) {
MS_LOG(ERROR) << "in_shape_ is nullptr";
return RET_ERROR;
} else {
memcpy(reinterpret_cast<void *>(const_cast<int *>(crop_para_->in_shape_)), input_shape.data(),
sizeof(int) * input_dim);
}
auto *out_tensor = out_tensors_.at(kOutputIndex);
auto output_shape = out_tensor->shape();
size_t output_dim = output_shape.size();
crop_para_->out_shape_ = reinterpret_cast<int *>(malloc(output_dim * sizeof(int)));
if (crop_para_->out_shape_ == nullptr) {
MS_LOG(ERROR) << "out_shape_ is nullptr";
return RET_ERROR;
} else {
memcpy(reinterpret_cast<void *>(const_cast<int *>(crop_para_->out_shape_)), output_shape.data(),
sizeof(int) * output_dim);
}
MS_ASSERT(input_dim <= CROP_OFFSET_MAX_SIZE);
crop_para_->input_dim_ = input_dim;
PadOffset(input_dim, crop_para_);
return RET_OK;
}
void CropBaseCPUKernel::PadOffset(int input_dim, CropParameter *crop_para) {
auto axis = crop_para->axis_;
auto offsets_size = crop_para->offset_size_;
MS_ASSERT(axis <= input_dim);
if (offsets_size > 1) {
MS_ASSERT(axis + offsets_size == input_dim);
}
for (int i = 0; i < input_dim; i++) {
int crop_offset = 0;
if (i >= axis) {
if (offsets_size == 1) {
crop_offset = crop_para->offset_[0];
} else if (offsets_size > 1) {
crop_offset = crop_para->offset_[i - axis];
}
}
crop_para->in_offset_[i] = crop_offset;
}
}
kernel::LiteKernel *CpuCropInt32KernelCreator(const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
const InnerContext *ctx, const kernel::KernelKey &desc,

@ -29,15 +29,20 @@ class CropBaseCPUKernel : public LiteKernel {
CropBaseCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, const InnerContext *ctx,
const mindspore::lite::PrimitiveC *primitive)
: LiteKernel(parameter, inputs, outputs, ctx, primitive), thread_count_(ctx->thread_num_) {}
: LiteKernel(parameter, inputs, outputs, ctx, primitive), thread_count_(ctx->thread_num_) {
crop_para_ = reinterpret_cast<CropParameter *>(op_parameter_);
crop_para_->thread_count_ = op_parameter_->thread_num_;
}
~CropBaseCPUKernel() = default;
int Init() override;
int ReSize() override { return 0; }
int ReSize() override;
int Run() override { return 0; }
protected:
CropParameter *crop_para_;
int thread_count_;
void PadOffset(int input_dim, CropParameter *crop_para);
};
} // namespace mindspore::kernel

@ -0,0 +1,130 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/runtime/kernel/arm/fp16/crop_fp16.h"
#include "include/errorcode.h"
#include "nnacl/crop_parameter.h"
#include "nnacl/fp16/cast_fp16.h"
#include "nnacl/fp16/crop_fp16.h"
#include "src/kernel_registry.h"
#include "src/runtime/kernel/arm/base/crop_base.h"
#include "src/runtime/kernel/arm/fp16/common_fp16.h"
#include "src/runtime/runtime_api.h"
using mindspore::kernel::KERNEL_ARCH::kCPU;
using mindspore::lite::KernelRegistrar;
using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_OK;
using mindspore::schema::PrimitiveType_Crop;
namespace mindspore::kernel {
int CropFp16CPUKernel::Init() {
auto ret = CropBaseCPUKernel::Init();
if (ret != RET_OK) {
return ret;
}
if (!InferShapeDone()) {
return RET_OK;
}
return ReSize();
}
int CropFp16CPUKernel::ReSize() { return CropBaseCPUKernel::ReSize(); }
int CropFp16CPUKernel::DoExecute(int task_id) {
Crop(input_ptr_, output_ptr_, task_id, crop_para_);
return RET_OK;
}
static int CropRun(void *cdata, int task_id) {
auto g_kernel = reinterpret_cast<CropFp16CPUKernel *>(cdata);
auto ret = g_kernel->DoExecute(task_id);
if (ret != RET_OK) {
MS_LOG(ERROR) << "CropRun error task_id[" << task_id << "] error_code[" << ret << "]";
return RET_ERROR;
}
return RET_OK;
}
int CropFp16CPUKernel::Run() {
auto ret = Prepare();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Prepare failed.";
return RET_ERROR;
}
input_ptr_ = ConvertInputFp32toFp16(in_tensors_.at(kInputIndex), context_);
if (input_ptr_ == nullptr) {
MS_LOG(ERROR) << "input or output is nullptr";
return RET_ERROR;
}
output_ptr_ = MallocOutputFp16(out_tensors_.at(kOutputIndex), context_);
if (output_ptr_ == nullptr) {
FreeInputAndOutput();
MS_LOG(ERROR) << "input or output is nullptr";
return RET_ERROR;
}
ret = ParallelLaunch(this->context_->thread_pool_, CropRun, this, thread_count_);
if (out_tensors_.at(kOutputIndex)->data_type() == kNumberTypeFloat32) {
Float16ToFloat32(output_ptr_, reinterpret_cast<float *>(out_tensors_.at(kOutputIndex)->MutableData()),
out_tensors_.at(kOutputIndex)->ElementsNum());
}
FreeInputAndOutput();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Crop error error_code[" << ret << "]";
}
return ret;
}
void CropFp16CPUKernel::FreeInputAndOutput() {
if (in_tensors_.at(kInputIndex)->data_type() == kNumberTypeFloat32) {
context_->allocator->Free(input_ptr_);
input_ptr_ = nullptr;
}
if (out_tensors_.at(kOutputIndex)->data_type() == kNumberTypeFloat32) {
context_->allocator->Free(output_ptr_);
output_ptr_ = nullptr;
}
}
kernel::LiteKernel *CpuCropFp16KernelCreator(const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
const InnerContext *ctx, const kernel::KernelKey &desc,
const mindspore::lite::PrimitiveC *primitive) {
if (opParameter == nullptr) {
MS_LOG(ERROR) << "Input opParameter is nullptr!";
return nullptr;
}
MS_ASSERT(desc.type == schema::PrimitiveType_Crop);
auto *kernel = new (std::nothrow) CropFp16CPUKernel(opParameter, inputs, outputs, ctx, primitive);
if (kernel == nullptr) {
MS_LOG(ERROR) << "new CropFp16CPUKernel fail!";
return nullptr;
}
auto ret = kernel->Init();
if (ret != RET_OK) {
delete kernel;
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
return nullptr;
}
return kernel;
}
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Crop, CpuCropFp16KernelCreator)
} // namespace mindspore::kernel

@ -0,0 +1,52 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP16_CROP_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP16_CROP_H_
#include <arm_neon.h>
#include <vector>
#include "src/lite_kernel.h"
#include "src/runtime/kernel/arm/base/crop_base.h"
namespace mindspore::kernel {
class CropFp16CPUKernel : public CropBaseCPUKernel {
public:
CropFp16CPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
const mindspore::lite::PrimitiveC *primitive)
: CropBaseCPUKernel(parameter, inputs, outputs, ctx, primitive) {
crop_para_ = reinterpret_cast<CropParameter *>(op_parameter_);
crop_para_->thread_count_ = op_parameter_->thread_num_;
}
~CropFp16CPUKernel() override = default;
int Init() override;
int ReSize() override;
int Run() override;
int DoExecute(int task_id);
private:
float16_t *input_ptr_ = nullptr;
float16_t *output_ptr_ = nullptr;
CropParameter *crop_para_;
void FreeInputAndOutput();
};
} // namespace mindspore::kernel
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP16_CROP_H_

@ -44,16 +44,6 @@ int CropInt8CPUKernel::Init() {
crop_para_->quant_arg.output_activation_max_ = std::numeric_limits<int8_t>::max();
crop_para_->quant_arg.output_activation_min_ = std::numeric_limits<int8_t>::min();
crop_para_->in_shape_ = reinterpret_cast<int *>(malloc(input_tensor->shape().size() * sizeof(int)));
if (crop_para_->in_shape_ == nullptr) {
MS_LOG(ERROR) << "malloc memory failed";
return RET_MEMORY_FAILED;
}
crop_para_->out_shape_ = reinterpret_cast<int *>(malloc(out_tensor->shape().size() * sizeof(int)));
if (crop_para_->out_shape_ == nullptr) {
MS_LOG(ERROR) << "malloc memory failed";
return RET_MEMORY_FAILED;
}
if (!InferShapeDone()) {
return RET_OK;
}
@ -72,35 +62,7 @@ CropInt8CPUKernel::~CropInt8CPUKernel() {
}
}
int CropInt8CPUKernel::ReSize() {
auto *input_tensor = in_tensors_.at(kInputIndex);
auto input_shape = input_tensor->shape();
size_t input_dim = input_shape.size();
if (crop_para_->in_shape_ == nullptr) {
MS_LOG(ERROR) << "in_shape_ is nullptr";
return RET_ERROR;
} else {
memcpy(reinterpret_cast<void *>(const_cast<int *>(crop_para_->in_shape_)), input_shape.data(),
sizeof(int) * input_dim);
}
auto *out_tensor = out_tensors_.at(kOutputIndex);
auto output_shape = out_tensor->shape();
size_t output_dim = output_shape.size();
if (crop_para_->out_shape_ == nullptr) {
MS_LOG(ERROR) << "out_shape_ is nullptr";
return RET_ERROR;
} else {
memcpy(reinterpret_cast<void *>(const_cast<int *>(crop_para_->out_shape_)), output_shape.data(),
sizeof(int) * output_dim);
}
MS_ASSERT(input_dim <= CROP_OFFSET_MAX_SIZE);
crop_para_->input_dim_ = input_dim;
PadOffset(input_dim, crop_para_);
return RET_OK;
}
int CropInt8CPUKernel::ReSize() { return CropBaseCPUKernel::ReSize(); }
int CropInt8CPUKernel::Run() {
auto ret = Prepare();
@ -112,26 +74,6 @@ int CropInt8CPUKernel::Run() {
return ret;
}
void PadOffset(int input_dim, CropParameter *crop_para) {
auto axis = crop_para->axis_;
auto offsets_size = crop_para->offset_size_;
MS_ASSERT(axis <= input_dim);
if (offsets_size > 1) {
MS_ASSERT(axis + offsets_size == input_dim);
}
for (int i = 0; i < input_dim; i++) {
int crop_offset = 0;
if (i >= axis) {
if (offsets_size == 1) {
crop_offset = crop_para->offset_[0];
} else if (offsets_size > 1) {
crop_offset = crop_para->offset_[i - axis];
}
}
crop_para->in_offset_[i] = crop_offset;
}
}
int CropInt8Run(void *cdata, int task_id) {
auto crop = reinterpret_cast<CropInt8CPUKernel *>(cdata);
crop->DoExecute(task_id);

Loading…
Cancel
Save