|
|
@ -38,10 +38,6 @@ def is_enable_onnxruntime():
|
|
|
|
run_on_onnxruntime = pytest.mark.skipif(not is_enable_onnxruntime(), reason="Only support running on onnxruntime")
|
|
|
|
run_on_onnxruntime = pytest.mark.skipif(not is_enable_onnxruntime(), reason="Only support running on onnxruntime")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def setup_module():
|
|
|
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def teardown_module():
|
|
|
|
def teardown_module():
|
|
|
|
cur_dir = os.path.dirname(os.path.realpath(__file__))
|
|
|
|
cur_dir = os.path.dirname(os.path.realpath(__file__))
|
|
|
|
for filename in os.listdir(cur_dir):
|
|
|
|
for filename in os.listdir(cur_dir):
|
|
|
@ -52,7 +48,7 @@ def teardown_module():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class BatchNormTester(nn.Cell):
|
|
|
|
class BatchNormTester(nn.Cell):
|
|
|
|
"used to test exporting network in training mode in onnx format"
|
|
|
|
"""used to test exporting network in training mode in onnx format"""
|
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, num_features):
|
|
|
|
def __init__(self, num_features):
|
|
|
|
super(BatchNormTester, self).__init__()
|
|
|
|
super(BatchNormTester, self).__init__()
|
|
|
@ -63,21 +59,22 @@ class BatchNormTester(nn.Cell):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_batchnorm_train_onnx_export():
|
|
|
|
def test_batchnorm_train_onnx_export():
|
|
|
|
"test onnx export interface does not modify trainable flag of a network"
|
|
|
|
"""test onnx export interface does not modify trainable flag of a network"""
|
|
|
|
input_ = Tensor(np.ones([1, 3, 32, 32]).astype(np.float32) * 0.01)
|
|
|
|
input_ = Tensor(np.ones([1, 3, 32, 32]).astype(np.float32) * 0.01)
|
|
|
|
net = BatchNormTester(3)
|
|
|
|
net = BatchNormTester(3)
|
|
|
|
net.set_train()
|
|
|
|
net.set_train()
|
|
|
|
if not net.training:
|
|
|
|
if not net.training:
|
|
|
|
raise ValueError('netowrk is not in training mode')
|
|
|
|
raise ValueError('netowrk is not in training mode')
|
|
|
|
onnx_file = 'batch_norm.onnx'
|
|
|
|
onnx_file = 'batch_norm'
|
|
|
|
export(net, input_, file_name=onnx_file, file_format='ONNX')
|
|
|
|
export(net, input_, file_name=onnx_file, file_format='ONNX')
|
|
|
|
|
|
|
|
|
|
|
|
if not net.training:
|
|
|
|
if not net.training:
|
|
|
|
raise ValueError('netowrk is not in training mode')
|
|
|
|
raise ValueError('netowrk is not in training mode')
|
|
|
|
# check existence of exported onnx file and delete it
|
|
|
|
|
|
|
|
assert os.path.exists(onnx_file)
|
|
|
|
file_name = "batch_norm.onnx"
|
|
|
|
os.chmod(onnx_file, stat.S_IWRITE)
|
|
|
|
assert os.path.exists(file_name)
|
|
|
|
os.remove(onnx_file)
|
|
|
|
os.chmod(file_name, stat.S_IWRITE)
|
|
|
|
|
|
|
|
os.remove(file_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class LeNet5(nn.Cell):
|
|
|
|
class LeNet5(nn.Cell):
|
|
|
@ -127,8 +124,7 @@ class DefinedNet(nn.Cell):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class DepthwiseConv2dAndReLU6(nn.Cell):
|
|
|
|
class DepthwiseConv2dAndReLU6(nn.Cell):
|
|
|
|
"Net for testing DepthwiseConv2d and ReLU6"
|
|
|
|
"""Net for testing DepthwiseConv2d and ReLU6"""
|
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, input_channel, kernel_size):
|
|
|
|
def __init__(self, input_channel, kernel_size):
|
|
|
|
super(DepthwiseConv2dAndReLU6, self).__init__()
|
|
|
|
super(DepthwiseConv2dAndReLU6, self).__init__()
|
|
|
|
weight_shape = [1, input_channel, kernel_size, kernel_size]
|
|
|
|
weight_shape = [1, input_channel, kernel_size, kernel_size]
|
|
|
@ -142,9 +138,9 @@ class DepthwiseConv2dAndReLU6(nn.Cell):
|
|
|
|
x = self.relu6(x)
|
|
|
|
x = self.relu6(x)
|
|
|
|
return x
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class DeepFMOpNet(nn.Cell):
|
|
|
|
class DeepFMOpNet(nn.Cell):
|
|
|
|
"""Net definition with Gatherv2 and Tile and Square."""
|
|
|
|
"""Net definition with Gatherv2 and Tile and Square."""
|
|
|
|
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
def __init__(self):
|
|
|
|
super(DeepFMOpNet, self).__init__()
|
|
|
|
super(DeepFMOpNet, self).__init__()
|
|
|
|
self.gather = P.GatherV2()
|
|
|
|
self.gather = P.GatherV2()
|
|
|
@ -157,12 +153,11 @@ class DeepFMOpNet(nn.Cell):
|
|
|
|
x = self.gather(x, y, 0)
|
|
|
|
x = self.gather(x, y, 0)
|
|
|
|
return x
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
# generate mindspore Tensor by shape and numpy datatype
|
|
|
|
|
|
|
|
def gen_tensor(shape, dtype=np.float32):
|
|
|
|
def gen_tensor(shape, dtype=np.float32):
|
|
|
|
return Tensor(np.ones(shape).astype(dtype))
|
|
|
|
return Tensor(np.ones(shape).astype(dtype))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# ut configs in triple: (ut_name, network, network-input)
|
|
|
|
|
|
|
|
net_cfgs = [
|
|
|
|
net_cfgs = [
|
|
|
|
('lenet', LeNet5(), gen_tensor([1, 1, 32, 32])),
|
|
|
|
('lenet', LeNet5(), gen_tensor([1, 1, 32, 32])),
|
|
|
|
('maxpoolwithargmax', DefinedNet(), gen_tensor([1, 3, 224, 224])),
|
|
|
|
('maxpoolwithargmax', DefinedNet(), gen_tensor([1, 3, 224, 224])),
|
|
|
@ -179,23 +174,21 @@ def get_id(cfg):
|
|
|
|
# use `pytest test_onnx.py::test_onnx_export[name]` or `pytest test_onnx.py::test_onnx_export -k name` to run single ut
|
|
|
|
# use `pytest test_onnx.py::test_onnx_export[name]` or `pytest test_onnx.py::test_onnx_export -k name` to run single ut
|
|
|
|
@pytest.mark.parametrize('name, net, inp', net_cfgs, ids=get_id(net_cfgs))
|
|
|
|
@pytest.mark.parametrize('name, net, inp', net_cfgs, ids=get_id(net_cfgs))
|
|
|
|
def test_onnx_export(name, net, inp):
|
|
|
|
def test_onnx_export(name, net, inp):
|
|
|
|
onnx_file = name + ".onnx"
|
|
|
|
|
|
|
|
if isinstance(inp, (tuple, list)):
|
|
|
|
if isinstance(inp, (tuple, list)):
|
|
|
|
export(net, *inp, file_name=onnx_file, file_format='ONNX')
|
|
|
|
export(net, *inp, file_name=name, file_format='ONNX')
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
export(net, inp, file_name=onnx_file, file_format='ONNX')
|
|
|
|
export(net, inp, file_name=name, file_format='ONNX')
|
|
|
|
|
|
|
|
|
|
|
|
# check existence of exported onnx file and delete it
|
|
|
|
file_file = name + ".onnx"
|
|
|
|
assert os.path.exists(onnx_file)
|
|
|
|
assert os.path.exists(file_file)
|
|
|
|
os.chmod(onnx_file, stat.S_IWRITE)
|
|
|
|
os.chmod(file_file, stat.S_IWRITE)
|
|
|
|
os.remove(onnx_file)
|
|
|
|
os.remove(file_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@run_on_onnxruntime
|
|
|
|
@run_on_onnxruntime
|
|
|
|
@pytest.mark.parametrize('name, net, inp', net_cfgs, ids=get_id(net_cfgs))
|
|
|
|
@pytest.mark.parametrize('name, net, inp', net_cfgs, ids=get_id(net_cfgs))
|
|
|
|
def test_onnx_export_load_run(name, net, inp):
|
|
|
|
def test_onnx_export_load_run(name, net, inp):
|
|
|
|
onnx_file = name + ".onnx"
|
|
|
|
export(net, inp, file_name=name, file_format='ONNX')
|
|
|
|
export(net, inp, file_name=onnx_file, file_format='ONNX')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import onnx
|
|
|
|
import onnx
|
|
|
|
import onnxruntime as ort
|
|
|
|
import onnxruntime as ort
|
|
|
@ -222,7 +215,7 @@ def test_onnx_export_load_run(name, net, inp):
|
|
|
|
outputs = ort_session.run(None, input_map)
|
|
|
|
outputs = ort_session.run(None, input_map)
|
|
|
|
print(outputs[0])
|
|
|
|
print(outputs[0])
|
|
|
|
|
|
|
|
|
|
|
|
# check existence of exported onnx file and delete it
|
|
|
|
file_name = name + ".onnx"
|
|
|
|
assert os.path.exists(onnx_file)
|
|
|
|
assert os.path.exists(file_name)
|
|
|
|
os.chmod(onnx_file, stat.S_IWRITE)
|
|
|
|
os.chmod(file_name, stat.S_IWRITE)
|
|
|
|
os.remove(onnx_file)
|
|
|
|
os.remove(file_name)
|
|
|
|