fix codex checking

pull/6362/head
lz 4 years ago
parent e9def9d276
commit 920aaa2304

@ -18,7 +18,6 @@
#include <vector> #include <vector>
#include <string> #include <string>
#include <unordered_map> #include <unordered_map>
// #include "include/lite_session.h"
#include "src/lite_session.h" #include "src/lite_session.h"
namespace mindspore { namespace mindspore {

@ -23,7 +23,6 @@
extern "C" { extern "C" {
#endif #endif
void AvgPoolingGrad(const float *input_ptr, float *output_ptr, PoolingParameter *pooling_param); void AvgPoolingGrad(const float *input_ptr, float *output_ptr, PoolingParameter *pooling_param);
// void MaxPoolingGrad(const float *dy, const int *indices_ptr, float *output_ptr, PoolingParameter *pooling_param);
void MaxPoolingGrad(const float *input_ptr, const float *dx_ptr, const float *dy_ptr, float *output_ptr, void MaxPoolingGrad(const float *input_ptr, const float *dx_ptr, const float *dy_ptr, float *output_ptr,
PoolingParameter *pooling_param); PoolingParameter *pooling_param);
#ifdef __cplusplus #ifdef __cplusplus

@ -65,10 +65,6 @@ int ApplyMomentum::InferShape(std::vector<lite::Tensor *> inputs, std::vector<li
MS_LOG(ERROR) << "ApplyMomentum should have at 5 input tensors"; MS_LOG(ERROR) << "ApplyMomentum should have at 5 input tensors";
return RET_ERROR; return RET_ERROR;
} }
// if (outputs.empty()) {
// MS_LOG(ERROR) << "ApplyMomentumCPUKernel error input output size!";
// return RET_ERROR;
// }
if (inputs[0]->ElementsNum() != inputs[1]->ElementsNum() || inputs[0]->ElementsNum() != inputs[3]->ElementsNum() || if (inputs[0]->ElementsNum() != inputs[1]->ElementsNum() || inputs[0]->ElementsNum() != inputs[3]->ElementsNum() ||
inputs[2]->ElementsNum() != 1 || inputs[4]->ElementsNum() != 1) { inputs[2]->ElementsNum() != 1 || inputs[4]->ElementsNum() != 1) {

@ -58,7 +58,6 @@ int BNGradCPUKernel::Run() {
auto *output_dx = out_tensors_.at(0); auto *output_dx = out_tensors_.at(0);
auto *output_scale = out_tensors_.at(1); auto *output_scale = out_tensors_.at(1);
auto *output_bias = out_tensors_.at(2); auto *output_bias = out_tensors_.at(2);
// Tensor *bias = input[5];
int batch = input_x->Batch(); int batch = input_x->Batch();
int channels = input_x->Channel(); int channels = input_x->Channel();
int spatial = input_x->Height() * input_x->Width(); int spatial = input_x->Height() * input_x->Width();

@ -40,9 +40,6 @@ class ConvolutionGradInputCPUKernel : public LiteKernel {
private: private:
float *workspace; float *workspace;
}; };
// OpParameter *PopulateConvolutionGradInputParameter(const lite::Primitive *primitive);
} // namespace mindspore::kernel } // namespace mindspore::kernel
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_GRAD_CONVOLUTION_GRAD_INPUT_H #endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_GRAD_CONVOLUTION_GRAD_INPUT_H

@ -33,17 +33,15 @@ int DependCPUKernel::Init() { return RET_OK; }
int DependCPUKernel::ReSize() { return 0; } int DependCPUKernel::ReSize() { return 0; }
int DependCPUKernel::Run() { int DependCPUKernel::Run() {
#if 0 // auto ret = Prepare();
auto ret = Prepare(); // if (ret != RET_OK) {
if (ret != RET_OK) { // MS_LOG(ERROR) << "Prepare failed.";
MS_LOG(ERROR) << "Prepare failed."; // return RET_ERROR;
return RET_ERROR; // }
} // auto in = reinterpret_cast<float *>(in_tensors_.at(0)->MutableData());
auto in = reinterpret_cast<float *>(in_tensors_.at(0)->MutableData()); // auto out = reinterpret_cast<float *>(out_tensors_.at(0)->MutableData());
auto out = reinterpret_cast<float *>(out_tensors_.at(0)->MutableData()); //
// memcpy(out, in, in_tensors_.at(0)->Size());
memcpy(out, in, in_tensors_.at(0)->Size());
#endif
return RET_OK; return RET_OK;
} }

@ -22,11 +22,9 @@
#include "src/kernel_registry.h" #include "src/kernel_registry.h"
#include "include/errorcode.h" #include "include/errorcode.h"
// using mindspore::kernel::KERNEL_ARCH::kCPU;
using mindspore::lite::KernelRegistrar; using mindspore::lite::KernelRegistrar;
using mindspore::lite::RET_ERROR; using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_OK; using mindspore::lite::RET_OK;
// using mindspore::schema::PrimitiveType_SoftMaxGrad;
namespace mindspore::kernel { namespace mindspore::kernel {
int SoftmaxGradCPUKernel::Init() { int SoftmaxGradCPUKernel::Init() {
@ -71,7 +69,6 @@ int SoftmaxGradCPUKernel::Init() {
int SoftmaxGradCPUKernel::ReSize() { return RET_OK; } int SoftmaxGradCPUKernel::ReSize() { return RET_OK; }
int SoftmaxGradCPUKernel::Run() { int SoftmaxGradCPUKernel::Run() {
// auto input_ptr = reinterpret_cast<float *>(in_tensors_.at(kInputIndex)->MutableData());
auto input_ptr = reinterpret_cast<float *>(in_tensors_.at(kInputIndex)->MutableData()); auto input_ptr = reinterpret_cast<float *>(in_tensors_.at(kInputIndex)->MutableData());
auto yt_ptr = reinterpret_cast<float *>(in_tensors_.at(1)->MutableData()); auto yt_ptr = reinterpret_cast<float *>(in_tensors_.at(1)->MutableData());
auto output_ptr = reinterpret_cast<float *>(out_tensors_.at(kOutputIndex)->MutableData()); auto output_ptr = reinterpret_cast<float *>(out_tensors_.at(kOutputIndex)->MutableData());
@ -85,7 +82,6 @@ kernel::LiteKernel *CpuSoftmaxGradFp32KernelCreator(const std::vector<lite::Tens
const kernel::KernelKey &desc, const kernel::KernelKey &desc,
const mindspore::lite::PrimitiveC *primitive) { const mindspore::lite::PrimitiveC *primitive) {
MS_ASSERT(opParameter != nullptr); MS_ASSERT(opParameter != nullptr);
// MS_ASSERT(desc.type == schema::PrimitiveType_SoftMaxGrad);
auto *kernel = new (std::nothrow) SoftmaxGradCPUKernel(opParameter, inputs, outputs, ctx, primitive); auto *kernel = new (std::nothrow) SoftmaxGradCPUKernel(opParameter, inputs, outputs, ctx, primitive);
if (kernel == nullptr) { if (kernel == nullptr) {
MS_LOG(ERROR) << "new SoftmaxGradCPUKernel fail!"; MS_LOG(ERROR) << "new SoftmaxGradCPUKernel fail!";
@ -101,5 +97,4 @@ kernel::LiteKernel *CpuSoftmaxGradFp32KernelCreator(const std::vector<lite::Tens
return kernel; return kernel;
} }
// REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_SoftMaxGrad, CpuSoftmaxGradFp32KernelCreator)
} // namespace mindspore::kernel } // namespace mindspore::kernel

@ -59,7 +59,6 @@ TrainSession::~TrainSession() {
} }
void *TrainSession::ExportToBuf(lite::Model *model, void *buf, size_t *len) const { void *TrainSession::ExportToBuf(lite::Model *model, void *buf, size_t *len) const {
// return model->ExportBuf(buf, len);
return nullptr; return nullptr;
} }
@ -79,9 +78,6 @@ int TrainSession::RunGraph(const session::KernelCallBack &before, const session:
} }
MS_EXCEPTION_IF_NULL(this->context_); MS_EXCEPTION_IF_NULL(this->context_);
// TODO(Emir)
// SetMaxWokerNum(context_->thread_num_);
// context_->running_ = true;
lite::Executor executor; lite::Executor executor;
if (before == nullptr && after == nullptr) { if (before == nullptr && after == nullptr) {
return executor.Run(this->inputs_, this->outputs_, infference_kernels, this->context_->allocator.get()); return executor.Run(this->inputs_, this->outputs_, infference_kernels, this->context_->allocator.get());

Loading…
Cancel
Save