pull/1626/head
yangyongjie 5 years ago
parent ded9608f6d
commit 92c1b2bd31

@ -0,0 +1,132 @@
# DeepFM Description
This is an example of training DeepFM with Criteo dataset in MindSpore.
[Paper](https://arxiv.org/pdf/1703.04247.pdf) Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, Xiuqiang He
# Model architecture
The overall network architecture of DeepFM is show below:
[Link](https://arxiv.org/pdf/1703.04247.pdf)
# Requirements
- Install [MindSpore](https://www.mindspore.cn/install/en).
- Download the criteo dataset for pre-training. Extract and clean text in the dataset with [WikiExtractor](https://github.com/attardi/wikiextractor). Convert the dataset to TFRecord format and move the files to a specified path.
- For more information, please check the resources below
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
# Script description
## Script and sample code
```python
├── deepfm
├── README.md
├── scripts
│ ├──run_train.sh
│ ├──run_eval.sh
├── src
│ ├──config.py
│ ├──dataset.py
│ ├──callback.py
│ ├──deepfm.py
├── train.py
├── eval.py
```
## Training process
### Usage
- sh run_train.sh [DEVICE_NUM] [DATASET_PATH] [MINDSPORE_HCCL_CONFIG_PAHT]
- python train.py --dataset_path [DATASET_PATH]
### Launch
```
# distribute training example
sh scripts/run_distribute_train.sh 8 /opt/dataset/criteo /opt/mindspore_hccl_file.json
# standalone training example
sh scripts/run_standalone_train.sh 0 /opt/dataset/criteo
or
python train.py --dataset_path /opt/dataset/criteo > output.log 2>&1 &
```
### Result
Training result will be stored in the example path.
Checkpoints will be stored at `./checkpoint` by default,
and training log will be redirected to `./output.log` by default,
and loss log will be redirected to `./loss.log` by default,
and eval log will be redirected to `./auc.log` by default.
## Eval process
### Usage
- sh run_eval.sh [DEVICE_ID] [DATASET_PATH] [CHECKPOINT_PATH]
### Launch
```
# infer example
sh scripts/run_eval.sh 0 ~/criteo/eval/ ~/train/deepfm-15_41257.ckpt
```
> checkpoint can be produced in training process.
### Result
Inference result will be stored in the example path, you can find result like the followings in `auc.log`.
```
2020-05-27 20:51:35 AUC: 0.80577889065281, eval time: 35.55999s.
```
# Model description
## Performance
### Training Performance
| Parameters | DeepFM |
| -------------------------- | ------------------------------------------------------|
| Model Version | |
| Resource | Ascend 910, cpu:2.60GHz 96cores, memory:1.5T |
| uploaded Date | 05/27/2020 |
| MindSpore Version | 0.2.0 |
| Dataset | Criteo |
| Training Parameters | src/config.py |
| Optimizer | Adam |
| Loss Function | SoftmaxCrossEntropyWithLogits |
| outputs | |
| Loss | 0.4234 |
| Accuracy | AUC[0.8055] |
| Total time | 91 min |
| Params (M) | |
| Checkpoint for Fine tuning | |
| Model for inference | |
#### Inference Performance
| Parameters | | |
| -------------------------- | ----------------------------- | ------------------------- |
| Model Version | | |
| Resource | Ascend 910 | Ascend 310 |
| uploaded Date | 05/27/2020 | 05/27/2020 |
| MindSpore Version | 0.2.0 | 0.2.0 |
| Dataset | Criteo | |
| batch_size | 1000 | |
| outputs | | |
| Accuracy | AUC[0.8055] | |
| Speed | | |
| Total time | 35.559s | |
| Model for inference | | |
# ModelZoo Homepage
[Link](https://gitee.com/mindspore/mindspore/tree/master/mindspore/model_zoo)

@ -0,0 +1,14 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the License);
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# httpwww.apache.orglicensesLICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an AS IS BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================

@ -0,0 +1,66 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""train_criteo."""
import os
import sys
import time
import argparse
from mindspore import context
from mindspore.train.model import Model
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from src.deepfm import ModelBuilder, AUCMetric
from src.config import DataConfig, ModelConfig, TrainConfig
from src.dataset import create_dataset
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
parser = argparse.ArgumentParser(description='CTR Prediction')
parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
args_opt, _ = parser.parse_known_args()
device_id = int(os.getenv('DEVICE_ID'))
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=device_id)
def add_write(file_path, print_str):
with open(file_path, 'a+', encoding='utf-8') as file_out:
file_out.write(print_str + '\n')
if __name__ == '__main__':
data_config = DataConfig()
model_config = ModelConfig()
train_config = TrainConfig()
ds_eval = create_dataset(args_opt.dataset_path, train_mode=False,
epochs=1, batch_size=train_config.batch_size)
model_builder = ModelBuilder(ModelConfig, TrainConfig)
train_net, eval_net = model_builder.get_train_eval_net()
train_net.set_train()
eval_net.set_train(False)
auc_metric = AUCMetric()
model = Model(train_net, eval_network=eval_net, metrics={"auc": auc_metric})
param_dict = load_checkpoint(args_opt.checkpoint_path)
load_param_into_net(eval_net, param_dict)
start = time.time()
res = model.eval(ds_eval)
eval_time = time.time() - start
time_str = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
out_str = f'{time_str} AUC: {list(res.values())[0]}, eval time: {eval_time}s.'
print(out_str)
add_write('./auc.log', str(out_str))

@ -0,0 +1,44 @@
#!/bin/bash
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
echo "Please run the script as: "
echo "sh scripts/run_distribute_train.sh DEVICE_NUM DATASET_PATH MINDSPORE_HCCL_CONFIG_PAHT"
echo "for example: sh scripts/run_distribute_train.sh 8 /dataset_path /rank_table_8p.json"
echo "After running the script, the network runs in the background, The log will be generated in logx/output.log"
export RANK_SIZE=$1
DATA_URL=$2
export MINDSPORE_HCCL_CONFIG_PAHT=$3
for ((i=0; i<RANK_SIZE;i++))
do
export DEVICE_ID=$i
export RANK_ID=$i
rm -rf log$i
mkdir ./log$i
cp *.py ./log$i
cp -r src ./log$i
cd ./log$i || exit
echo "start training for rank $i, device $DEVICE_ID"
env > env.log
python -u train.py \
--dataset_path=$DATA_URL \
--ckpt_path="checkpoint" \
--eval_file_name='auc.log' \
--loss_file_name='loss.log' \
--do_eval=True > output.log 2>&1 &
cd ../
done

@ -0,0 +1,32 @@
#!/bin/bash
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
echo "Please run the script as: "
echo "sh scripts/run_eval.sh DEVICE_ID DATASET_PATH CHECKPOINT_PATH"
echo "for example: sh scripts/run_eval.sh 0 /dataset_path /checkpoint_path"
echo "After running the script, the network runs in the background, The log will be generated in ms_log/eval_output.log"
export DEVICE_ID=$1
DATA_URL=$2
CHECKPOINT_PATH=$3
mkdir -p ms_log
CUR_DIR=`pwd`
export GLOG_log_dir=${CUR_DIR}/ms_log
export GLOG_logtostderr=0
python -u eval.py \
--dataset_path=$DATA_URL \
--checkpoint_path=$CHECKPOINT_PATH > ms_log/eval_output.log 2>&1 &

@ -0,0 +1,34 @@
#!/bin/bash
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
echo "Please run the script as: "
echo "sh scripts/run_standalone_train.sh DEVICE_ID DATASET_PATH"
echo "for example: sh scripts/run_standalone_train.sh 0 /dataset_path"
echo "After running the script, the network runs in the background, The log will be generated in ms_log/output.log"
export DEVICE_ID=$1
DATA_URL=$2
mkdir -p ms_log
CUR_DIR=`pwd`
export GLOG_log_dir=${CUR_DIR}/ms_log
export GLOG_logtostderr=0
python -u train.py \
--dataset_path=$DATA_URL \
--ckpt_path="checkpoint" \
--eval_file_name='auc.log' \
--loss_file_name='loss.log' \
--do_eval=True > ms_log/output.log 2>&1 &

@ -0,0 +1,14 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the License);
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# httpwww.apache.orglicensesLICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an AS IS BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================

@ -0,0 +1,107 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the License);
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# httpwww.apache.orglicensesLICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an AS IS BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Defined callback for DeepFM.
"""
import time
from mindspore.train.callback import Callback
def add_write(file_path, out_str):
with open(file_path, 'a+', encoding='utf-8') as file_out:
file_out.write(out_str + '\n')
class EvalCallBack(Callback):
"""
Monitor the loss in training.
If the loss is NAN or INF terminating training.
Note
If per_print_times is 0 do not print loss.
"""
def __init__(self, model, eval_dataset, auc_metric, eval_file_path):
super(EvalCallBack, self).__init__()
self.model = model
self.eval_dataset = eval_dataset
self.aucMetric = auc_metric
self.aucMetric.clear()
self.eval_file_path = eval_file_path
def epoch_end(self, run_context):
start_time = time.time()
out = self.model.eval(self.eval_dataset)
eval_time = int(time.time() - start_time)
time_str = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
out_str = "{} EvalCallBack metric{}; eval_time{}s".format(
time_str, out.values(), eval_time)
print(out_str)
add_write(self.eval_file_path, out_str)
class LossCallBack(Callback):
"""
Monitor the loss in training.
If the loss is NAN or INF terminating training.
Note
If per_print_times is 0 do not print loss.
Args
loss_file_path (str) The file absolute path, to save as loss_file;
per_print_times (int) Print loss every times. Default 1.
"""
def __init__(self, loss_file_path, per_print_times=1):
super(LossCallBack, self).__init__()
if not isinstance(per_print_times, int) or per_print_times < 0:
raise ValueError("print_step must be int and >= 0.")
self.loss_file_path = loss_file_path
self._per_print_times = per_print_times
def step_end(self, run_context):
cb_params = run_context.original_args()
loss = cb_params.net_outputs.asnumpy()
cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num + 1
cur_num = cb_params.cur_step_num
if self._per_print_times != 0 and cur_num % self._per_print_times == 0:
with open(self.loss_file_path, "a+") as loss_file:
time_str = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
loss_file.write("{} epoch: {} step: {}, loss is {}\n".format(
time_str, cb_params.cur_epoch_num, cur_step_in_epoch, loss))
print("epoch: {} step: {}, loss is {}\n".format(
cb_params.cur_epoch_num, cur_step_in_epoch, loss))
class TimeMonitor(Callback):
"""
Time monitor for calculating cost of each epoch.
Args
data_size (int) step size of an epoch.
"""
def __init__(self, data_size):
super(TimeMonitor, self).__init__()
self.data_size = data_size
def epoch_begin(self, run_context):
self.epoch_time = time.time()
def epoch_end(self, run_context):
epoch_mseconds = (time.time() - self.epoch_time) * 1000
per_step_mseconds = epoch_mseconds / self.data_size
print("epoch time: {0}, per step time: {1}".format(epoch_mseconds, per_step_mseconds), flush=True)
def step_begin(self, run_context):
self.step_time = time.time()
def step_end(self, run_context):
step_mseconds = (time.time() - self.step_time) * 1000
print(f"step time {step_mseconds}", flush=True)

@ -0,0 +1,62 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
network config setting, will be used in train.py and eval.py
"""
class DataConfig:
"""
Define parameters of dataset.
"""
data_vocab_size = 184965
train_num_of_parts = 21
test_num_of_parts = 3
batch_size = 1000
data_field_size = 39
# dataset format, 1: mindrecord, 2: tfrecord, 3: h5
data_format = 2
class ModelConfig:
"""
Define parameters of model.
"""
batch_size = DataConfig.batch_size
data_field_size = DataConfig.data_field_size
data_vocab_size = DataConfig.data_vocab_size
data_emb_dim = 80
deep_layer_args = [[400, 400, 512], "relu"]
init_args = [-0.01, 0.01]
weight_bias_init = ['normal', 'normal']
keep_prob = 0.9
class TrainConfig:
"""
Define parameters of training.
"""
batch_size = DataConfig.batch_size
l2_coef = 1e-6
learning_rate = 1e-5
epsilon = 1e-8
loss_scale = 1024.0
train_epochs = 15
save_checkpoint = True
ckpt_file_name_prefix = "deepfm"
save_checkpoint_steps = 1
keep_checkpoint_max = 15
eval_callback = True
loss_callback = True

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

@ -0,0 +1,91 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""train_criteo."""
import os
import sys
import argparse
from mindspore import context, ParallelMode
from mindspore.communication.management import init
from mindspore.train.model import Model
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor
from src.deepfm import ModelBuilder, AUCMetric
from src.config import DataConfig, ModelConfig, TrainConfig
from src.dataset import create_dataset, DataType
from src.callback import EvalCallBack, LossCallBack
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
parser = argparse.ArgumentParser(description='CTR Prediction')
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
parser.add_argument('--ckpt_path', type=str, default=None, help='Checkpoint path')
parser.add_argument('--eval_file_name', type=str, default="./auc.log", help='eval file path')
parser.add_argument('--loss_file_name', type=str, default="./loss.log", help='loss file path')
parser.add_argument('--do_eval', type=bool, default=True, help='Do evaluation or not.')
args_opt, _ = parser.parse_known_args()
device_id = int(os.getenv('DEVICE_ID'))
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=device_id)
if __name__ == '__main__':
data_config = DataConfig()
model_config = ModelConfig()
train_config = TrainConfig()
rank_size = int(os.environ.get("RANK_SIZE", 1))
if rank_size > 1:
context.reset_auto_parallel_context()
context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True)
init()
rank_id = int(os.environ.get('RANK_ID'))
else:
rank_size = None
rank_id = None
ds_train = create_dataset(args_opt.dataset_path,
train_mode=True,
epochs=train_config.train_epochs,
batch_size=train_config.batch_size,
data_type=DataType(data_config.data_format),
rank_size=rank_size,
rank_id=rank_id)
model_builder = ModelBuilder(ModelConfig, TrainConfig)
train_net, eval_net = model_builder.get_train_eval_net()
auc_metric = AUCMetric()
model = Model(train_net, eval_network=eval_net, metrics={"auc": auc_metric})
time_callback = TimeMonitor(data_size=ds_train.get_dataset_size())
loss_callback = LossCallBack(loss_file_path=args_opt.loss_file_name)
callback_list = [time_callback, loss_callback]
if train_config.save_checkpoint:
config_ck = CheckpointConfig(save_checkpoint_steps=train_config.save_checkpoint_steps,
keep_checkpoint_max=train_config.keep_checkpoint_max)
ckpt_cb = ModelCheckpoint(prefix=train_config.ckpt_file_name_prefix,
directory=args_opt.ckpt_path,
config=config_ck)
callback_list.append(ckpt_cb)
if args_opt.do_eval:
ds_eval = create_dataset(args_opt.dataset_path, train_mode=False,
epochs=train_config.train_epochs,
batch_size=train_config.batch_size,
data_type=DataType(data_config.data_format))
eval_callback = EvalCallBack(model, ds_eval, auc_metric,
eval_file_path=args_opt.eval_file_name)
callback_list.append(eval_callback)
model.train(train_config.train_epochs, ds_train, callbacks=callback_list)
Loading…
Cancel
Save