!8008 Add gpu support to ScatterAdd
Merge pull request !8008 from 34bunny/GPU-ScatterAddpull/8008/MERGE
commit
93c11d1dcc
@ -0,0 +1,36 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/gpu/arrays/scatter_add_gpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
MS_REG_GPU_KERNEL_ONE(ScatterAdd,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat32),
|
||||
ScatterAddKernel, float)
|
||||
MS_REG_GPU_KERNEL_ONE(ScatterAdd,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddOutputAttr(kNumberTypeFloat16),
|
||||
ScatterAddKernel, half)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
@ -0,0 +1,95 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_ARRAYS_SCATTER_ADD_GPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_ARRAYS_SCATTER_ADD_GPU_KERNEL_H_
|
||||
|
||||
#include <vector>
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
|
||||
#include "backend/kernel_compiler/gpu/cuda_impl/scatter_add_impl.cuh"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename T>
|
||||
class ScatterAddKernel : public GpuKernel {
|
||||
public:
|
||||
ScatterAddKernel() : input_size_(0), inner_size_(0), indices_size_(0), updates_size_(0) {}
|
||||
~ScatterAddKernel() override = default;
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
|
||||
T *input = GetDeviceAddress<T>(inputs, 0);
|
||||
int *indices = GetDeviceAddress<int>(inputs, 1);
|
||||
T *updates = GetDeviceAddress<T>(inputs, 2);
|
||||
T *output = GetDeviceAddress<T>(outputs, 0);
|
||||
CalScatterAdd(input_size_, inner_size_, indices_size_, input, indices, updates, output,
|
||||
reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if (input_num != 3) {
|
||||
MS_LOG(ERROR) << "Input number is " << input_num << ", but ScatterAdd needs 3 inputs.";
|
||||
return false;
|
||||
}
|
||||
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
|
||||
if (output_num != 1) {
|
||||
MS_LOG(ERROR) << "Output number is " << output_num << ", but ScatterAdd has 1 output.";
|
||||
return false;
|
||||
}
|
||||
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
input_size_ = 1;
|
||||
inner_size_ = 1;
|
||||
for (size_t i = 1; i < input_shape.size(); i++) {
|
||||
inner_size_ *= input_shape[i];
|
||||
}
|
||||
input_size_ = input_shape[0] * inner_size_;
|
||||
auto indices_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
|
||||
indices_size_ = 1;
|
||||
for (size_t i = 0; i < indices_shape.size(); i++) {
|
||||
indices_size_ *= indices_shape[i];
|
||||
}
|
||||
updates_size_ = indices_size_ * inner_size_;
|
||||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() override {
|
||||
input_size_list_.push_back(input_size_ * sizeof(T));
|
||||
input_size_list_.push_back(indices_size_ * sizeof(int));
|
||||
input_size_list_.push_back(updates_size_ * sizeof(T));
|
||||
output_size_list_.push_back(input_size_ * sizeof(T));
|
||||
}
|
||||
|
||||
private:
|
||||
int input_size_;
|
||||
int inner_size_;
|
||||
int indices_size_;
|
||||
int updates_size_;
|
||||
std::vector<size_t> input_size_list_;
|
||||
std::vector<size_t> output_size_list_;
|
||||
std::vector<size_t> workspace_size_list_;
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_ARRAYS_SCATTER_ADD_GPU_KERNEL_H_
|
@ -0,0 +1,45 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/gpu/cuda_impl/scatter_add_impl.cuh"
|
||||
|
||||
template <typename T>
|
||||
__global__ void ScatterAdd(const int input_size, const int inner_size, const int indices_size, const T *input,
|
||||
const int *indices, const T *updates, T *output) {
|
||||
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < input_size; pos += blockDim.x * gridDim.x) {
|
||||
output[pos] = input[pos];
|
||||
const size_t index = pos / inner_size;
|
||||
const size_t offset = pos % inner_size;
|
||||
for (size_t i = 0; i < indices_size; i++) {
|
||||
const T value = updates[i*inner_size+offset];
|
||||
output[pos] += (indices[i] == index ? value : static_cast<T>(0.0));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void CalScatterAdd(const int &input_size, const int &inner_size, const int &indices_size, const T *input,
|
||||
const int *indices, const T *updates, T *output, cudaStream_t cuda_stream) {
|
||||
ScatterAdd<<<GET_BLOCKS(input_size), GET_THREADS, 0, cuda_stream>>>(input_size, inner_size, indices_size, input,
|
||||
indices, updates, output);
|
||||
}
|
||||
|
||||
template void CalScatterAdd<float>(const int &input_size, const int &inner_size, const int &indices_size,
|
||||
const float *input, const int *indices, const float *updates, float *output,
|
||||
cudaStream_t cuda_stream);
|
||||
template void CalScatterAdd<half>(const int &input_size, const int &inner_size, const int &indices_size,
|
||||
const half *input, const int *indices, const half *updates, half *output,
|
||||
cudaStream_t cuda_stream);
|
@ -0,0 +1,26 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_SCATTER_ADD_IMPL_CUH_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_SCATTER_ADD_IMPL_CUH_
|
||||
|
||||
#include "runtime/device/gpu/cuda_common.h"
|
||||
|
||||
template <typename T>
|
||||
void CalScatterAdd(const int &input_size, const int &inner_size, const int &indices_size, const T *input,
|
||||
const int *indices, const T *updates, T *output, cudaStream_t cuda_stream);
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_SCATTER_ADD_IMPL_CUH_
|
@ -0,0 +1,114 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor, Parameter
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
# all cases tested against dchip
|
||||
|
||||
class TestScatterAddNet(nn.Cell):
|
||||
def __init__(self, inputx, indices, updates):
|
||||
super(TestScatterAddNet, self).__init__()
|
||||
self.scatter_add = P.ScatterAdd()
|
||||
self.inputx = Parameter(inputx, name="inputx")
|
||||
self.indices = Parameter(indices, name="indices")
|
||||
self.updates = Parameter(updates, name="updates")
|
||||
|
||||
def construct(self):
|
||||
out = self.scatter_add(self.inputx, self.indices, self.updates)
|
||||
return out
|
||||
|
||||
def scatter_add_net(inputx, indices, updates):
|
||||
net = TestScatterAddNet(inputx, indices, updates)
|
||||
return net()
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_scatter_add_small_float32():
|
||||
inputx = Tensor(np.zeros((2, 3)).astype(np.float32))
|
||||
indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32))
|
||||
updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32))
|
||||
output = scatter_add_net(inputx, indices, updates)
|
||||
expected = np.array([[6., 8., 10.],
|
||||
[12., 14., 16.]])
|
||||
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_scatter_add_input_less_than_1_float32():
|
||||
inputx = Tensor(np.array([[0.214141, 0.415151, 0.51516],
|
||||
[0.876542, 0.451611, 0.55112],
|
||||
[0.111244, 0.633333, 0.34444]]).astype(np.float32))
|
||||
indices = Tensor(np.array([[[1, 0, 2],
|
||||
[2, 2, 0]],
|
||||
[[1, 0, 1],
|
||||
[2, 1, 2]]]).astype(np.int32))
|
||||
updates = Tensor(np.arange(34, 70).reshape((2, 2, 3, 3)).astype(np.float32))
|
||||
output = scatter_add_net(inputx, indices, updates)
|
||||
expected = np.array([[141.21414, 144.41515, 147.51517],
|
||||
[208.87654, 212.45161, 216.55112],
|
||||
[257.11124, 262.63333, 267.34442]], dtype=np.float32)
|
||||
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_scatter_add_float16():
|
||||
inputx = Tensor(np.zeros((2, 3)).astype(np.float16))
|
||||
indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32))
|
||||
updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float16))
|
||||
output = scatter_add_net(inputx, indices, updates)
|
||||
expected = np.array([[6., 8., 10.],
|
||||
[12., 14., 16.]])
|
||||
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_scatter_add_large_float16():
|
||||
inputx = Tensor(np.zeros((2, 3, 4)).astype(np.float16))
|
||||
indices = Tensor(np.array([[0, 0], [1, 1]]).astype(np.int32))
|
||||
updates = Tensor(np.arange(63, 111).reshape((2, 2, 3, 4)).astype(np.float16))
|
||||
output = scatter_add_net(inputx, indices, updates)
|
||||
expected = np.array([[[138., 140., 142., 144.],
|
||||
[146., 148., 150., 152.],
|
||||
[154., 156., 158., 160.]],
|
||||
[[186., 188., 190., 192.],
|
||||
[194., 196., 198., 200.],
|
||||
[202., 204., 206., 208.]]])
|
||||
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_scatter_add_disordered_float16():
|
||||
inputx = Tensor(np.flip(np.arange(34, 46).reshape(3, 4).astype(np.float16)))
|
||||
indices = Tensor(np.array([[[0, 1, 2],
|
||||
[2, 1, 0]],
|
||||
[[0, 0, 0],
|
||||
[2, 2, 2]]]).astype(np.int32))
|
||||
updates = Tensor(np.arange(63, 111).reshape((2, 2, 3, 4)).astype(np.float16))
|
||||
output = scatter_add_net(inputx, indices, updates)
|
||||
expected = np.array([[464., 468., 472., 476.],
|
||||
[187., 188., 189., 190.],
|
||||
[492., 496., 500., 504.]])
|
||||
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
|
Loading…
Reference in new issue