!11731 Add dynamic shape support to ReLU6 GPU

From: @TFbunny
Reviewed-by: 
Signed-off-by:
pull/11731/MERGE
mindspore-ci-bot 4 years ago committed by Gitee
commit 96cea98864

@ -141,6 +141,7 @@ PrimitiveEvalImplMap &GetPrimitiveToEvalImplMap() {
{prim::kPrimBiasAdd, {InferImplBiasAdd, true}},
{prim::kPrimBiasAddGrad, {InferImplBiasAddGrad, true}},
{prim::kPrimRelu, {InferImplRelu, true}},
{prim::kPrimRelu6, {InferImplRelu, true}},
{prim::kPrimZerosLike, {InferImplZerosLike, true}},
{prim::kPrimBpropCut, {InferImplBpropCut, true}},
{prim::kPrimLayerNorm, {InferImplLayerNorm, true}},

@ -441,7 +441,7 @@ class SeLU(PrimitiveWithInfer):
return x_dtype
class ReLU6(PrimitiveWithInfer):
class ReLU6(PrimitiveWithCheck):
r"""
Computes ReLU (Rectified Linear Unit) upper bounded by 6 of input tensors element-wise.
@ -477,12 +477,11 @@ class ReLU6(PrimitiveWithInfer):
"""Initialize ReLU6"""
self.init_prim_io_names(inputs=['x'], outputs=['output'])
def infer_shape(self, input_x):
return input_x
def check_shape(self, input_x):
pass
def infer_dtype(self, input_x):
def check_dtype(self, input_x):
validator.check_tensor_dtype_valid('input_x', input_x, (mstype.float16, mstype.float32), self.name)
return input_x
class ReLUV2(PrimitiveWithInfer):

@ -1,4 +1,4 @@
# Copyright 2020 Huawei Technologies Co., Ltd
# Copyright 2020-2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -20,6 +20,7 @@ import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.ops.operations import _inner_ops as inner
class NetReLU6(nn.Cell):
@ -31,6 +32,17 @@ class NetReLU6(nn.Cell):
return self.relu6(x)
class NetRelu6Dynamic(nn.Cell):
def __init__(self):
super(NetRelu6Dynamic, self).__init__()
self.test_dynamic = inner.GpuConvertToDynamicShape()
self.relu6 = P.ReLU6()
def construct(self, x):
x = self.test_dynamic(x)
return self.relu6(x)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
@ -51,3 +63,27 @@ def test_relu6():
relu6 = NetReLU6()
output = relu6(x)
assert (output.asnumpy() == expect).all()
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_relu6_dynamic():
x1 = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]).astype(np.float32))
expect1 = np.array([[0, 4, 0,],
[2, 0, 6,]]).astype(np.float32)
x2 = Tensor(np.array([[[[-1, 1, 10],
[5.9, 6.1, 6],
[10, 1, -1]]]]).astype(np.float32))
expect2 = np.array([[[[0, 1, 6,],
[5.9, 6, 6,],
[6, 1, 0.]]]]).astype(np.float32)
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
relu6 = NetRelu6Dynamic()
output1 = relu6(x1)
assert (output1.asnumpy() == expect1).all()
output2 = relu6(x2)
assert (output2.asnumpy() == expect2).all()

Loading…
Cancel
Save