modify BatchNorm docs

pull/12990/head
caifubi 4 years ago
parent b8fc22d551
commit 972613fcd8

@ -1267,12 +1267,20 @@ class BatchNorm(PrimitiveWithInfer):
Default: "NCHW".
Inputs:
If `is_training` is False, inputs are Tensors.
- **input_x** (Tensor) - Tensor of shape :math:`(N, C)`, with float16 or float32 data type.
- **scale** (Tensor) - Tensor of shape :math:`(C,)`, with float16 or float32 data type.
- **bias** (Tensor) - Tensor of shape :math:`(C,)`, has the same data type with `scale`.
- **mean** (Tensor) - Tensor of shape :math:`(C,)`, with float16 or float32 data type.
- **variance** (Tensor) - Tensor of shape :math:`(C,)`, has the same data type with `mean`.
If `is_training` is True, `scale`, `bias`, `mean` and `variance` are Parameters.
- **input_x** (Tensor) - Tensor of shape :math:`(N, C)`, with float16 or float32 data type.
- **scale** (Parameter) - Parameter of shape :math:`(C,)`, with float16 or float32 data type.
- **bias** (Parameter) - Parameter of shape :math:`(C,)`, has the same data type with `scale`.
- **mean** (Parameter) - Parameter of shape :math:`(C,)`, with float16 or float32 data type.
- **variance** (Parameter) - Parameter of shape :math:`(C,)`, has the same data type with `mean`.
Outputs:
Tuple of 5 Tensor, the normalized inputs and the updated parameters.

Loading…
Cancel
Save