parent
6b68671805
commit
99fda6f431
@ -0,0 +1,68 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""math"""
|
||||||
|
from mindspore.ops import operations as P
|
||||||
|
from ..cell import Cell
|
||||||
|
from ..._checkparam import Validator as validator
|
||||||
|
|
||||||
|
__all__ = ['ReduceLogSumExp']
|
||||||
|
|
||||||
|
class ReduceLogSumExp(Cell):
|
||||||
|
r"""
|
||||||
|
Reduce a dimension of a tensor by calculating exponential for all elements in the dimension,
|
||||||
|
then calculate logarithm of the sum.
|
||||||
|
|
||||||
|
The dtype of the tensor to be reduced is number.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
keep_dims (bool): If True, keep these reduced dimensions and the length is 1.
|
||||||
|
If False, don't keep these dimensions.
|
||||||
|
Default : False.
|
||||||
|
|
||||||
|
Inputs:
|
||||||
|
- **input_x** (Tensor[Number]) - The input tensor.
|
||||||
|
- **axis** (Union[int, tuple(int), list(int)]) - The dimensions to reduce. Default: (), reduce all dimensions.
|
||||||
|
Only constant value is allowed.
|
||||||
|
|
||||||
|
Outputs:
|
||||||
|
Tensor, has the same dtype as the 'input_x'.
|
||||||
|
|
||||||
|
- If axis is (), and keep_dims is false,
|
||||||
|
the output is a 0-D tensor representing the sum of all elements in the input tensor.
|
||||||
|
- If axis is int, set as 2, and keep_dims is false,
|
||||||
|
the shape of output is :math:`(x_1, x_3, ..., x_R)`.
|
||||||
|
- If axis is tuple(int), set as (2, 3), and keep_dims is false,
|
||||||
|
the shape of output is :math:`(x_1, x_4, ..., x_R)`.
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
>>> input_x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
|
||||||
|
>>> op = P.ReduceLogSumExp(keep_dims=True)
|
||||||
|
>>> output = op(input_x, 1)
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, axis, keep_dims=False):
|
||||||
|
super(ReduceLogSumExp, self).__init__()
|
||||||
|
validator.check_value_type('axis', axis, [int, list, tuple], self.cls_name)
|
||||||
|
validator.check_value_type('keep_dims', keep_dims, [bool], self.cls_name)
|
||||||
|
self.axis = axis
|
||||||
|
self.exp = P.Exp()
|
||||||
|
self.sum = P.ReduceSum(keep_dims)
|
||||||
|
self.log = P.Log()
|
||||||
|
|
||||||
|
def construct(self, input_x):
|
||||||
|
exp = self.exp(input_x)
|
||||||
|
sumexp = self.sum(exp, self.axis)
|
||||||
|
logsumexp = self.log(sumexp)
|
||||||
|
return logsumexp
|
Loading…
Reference in new issue