parent
42cbdfcafc
commit
9f5ab8f76f
@ -0,0 +1,70 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.unique = P.Unique().add_prim_attr("primitive_target", "CPU")
|
||||
|
||||
def construct(self, x):
|
||||
x, y = self.unique(x)
|
||||
return (x, y)
|
||||
|
||||
|
||||
class UniqueSquare(nn.Cell):
|
||||
def __init__(self):
|
||||
super(UniqueSquare, self).__init__()
|
||||
self.unique = P.Unique().add_prim_attr("primitive_target", "CPU")
|
||||
self.square = P.Square()
|
||||
|
||||
def construct(self, x):
|
||||
x, _ = self.unique(x)
|
||||
return self.square(x)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_unique_ascend():
|
||||
x = Tensor(np.array([1, 1, 2, 2, 3, 3]), mstype.int32)
|
||||
unique = Net()
|
||||
output = unique(x)
|
||||
expect1 = np.array([1, 2, 3])
|
||||
expect2 = np.array([0, 0, 1, 1, 2, 2])
|
||||
assert (output[0].asnumpy() == expect1).all()
|
||||
assert (output[1].asnumpy() == expect2).all()
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_unique_square():
|
||||
x = Tensor(np.array([1, 1, 2, 2, 3, 3]), mstype.int32)
|
||||
net = UniqueSquare()
|
||||
output = net(x)
|
||||
expect1 = np.array([1, 4, 9])
|
||||
assert (output.asnumpy() == expect1).all()
|
@ -0,0 +1,69 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.unique = P.Unique()
|
||||
|
||||
def construct(self, x):
|
||||
return self.unique(x)
|
||||
|
||||
|
||||
class UniqueSquare(nn.Cell):
|
||||
def __init__(self):
|
||||
super(UniqueSquare, self).__init__()
|
||||
self.unique = P.Unique()
|
||||
self.square = P.Square()
|
||||
|
||||
def construct(self, x):
|
||||
x, _ = self.unique(x)
|
||||
return self.square(x)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_unique_cpu():
|
||||
x = Tensor(np.array([1, 1, 2, 2, 3, 3]), mstype.int32)
|
||||
unique = Net()
|
||||
output = unique(x)
|
||||
expect1 = np.array([1, 2, 3])
|
||||
expect2 = np.array([0, 0, 1, 1, 2, 2])
|
||||
assert (output[0].asnumpy() == expect1).all()
|
||||
assert (output[1].asnumpy() == expect2).all()
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_unique_square():
|
||||
x = Tensor(np.array([1, 1, 2, 2, 3, 3]), mstype.int32)
|
||||
net = UniqueSquare()
|
||||
output = net(x)
|
||||
expect1 = np.array([1, 4, 9])
|
||||
assert (output.asnumpy() == expect1).all()
|
Loading…
Reference in new issue