parent
42cbdfcafc
commit
9f5ab8f76f
@ -0,0 +1,70 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
import numpy as np
|
||||||
|
import pytest
|
||||||
|
import mindspore.context as context
|
||||||
|
import mindspore.nn as nn
|
||||||
|
from mindspore import Tensor
|
||||||
|
import mindspore.common.dtype as mstype
|
||||||
|
from mindspore.ops import operations as P
|
||||||
|
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||||
|
|
||||||
|
|
||||||
|
class Net(nn.Cell):
|
||||||
|
def __init__(self):
|
||||||
|
super(Net, self).__init__()
|
||||||
|
self.unique = P.Unique().add_prim_attr("primitive_target", "CPU")
|
||||||
|
|
||||||
|
def construct(self, x):
|
||||||
|
x, y = self.unique(x)
|
||||||
|
return (x, y)
|
||||||
|
|
||||||
|
|
||||||
|
class UniqueSquare(nn.Cell):
|
||||||
|
def __init__(self):
|
||||||
|
super(UniqueSquare, self).__init__()
|
||||||
|
self.unique = P.Unique().add_prim_attr("primitive_target", "CPU")
|
||||||
|
self.square = P.Square()
|
||||||
|
|
||||||
|
def construct(self, x):
|
||||||
|
x, _ = self.unique(x)
|
||||||
|
return self.square(x)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_arm_ascend_training
|
||||||
|
@pytest.mark.platform_x86_ascend_training
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
def test_unique_ascend():
|
||||||
|
x = Tensor(np.array([1, 1, 2, 2, 3, 3]), mstype.int32)
|
||||||
|
unique = Net()
|
||||||
|
output = unique(x)
|
||||||
|
expect1 = np.array([1, 2, 3])
|
||||||
|
expect2 = np.array([0, 0, 1, 1, 2, 2])
|
||||||
|
assert (output[0].asnumpy() == expect1).all()
|
||||||
|
assert (output[1].asnumpy() == expect2).all()
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_arm_ascend_training
|
||||||
|
@pytest.mark.platform_x86_ascend_training
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
def test_unique_square():
|
||||||
|
x = Tensor(np.array([1, 1, 2, 2, 3, 3]), mstype.int32)
|
||||||
|
net = UniqueSquare()
|
||||||
|
output = net(x)
|
||||||
|
expect1 = np.array([1, 4, 9])
|
||||||
|
assert (output.asnumpy() == expect1).all()
|
@ -0,0 +1,69 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
import numpy as np
|
||||||
|
import pytest
|
||||||
|
import mindspore.context as context
|
||||||
|
import mindspore.nn as nn
|
||||||
|
from mindspore import Tensor
|
||||||
|
import mindspore.common.dtype as mstype
|
||||||
|
from mindspore.ops import operations as P
|
||||||
|
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||||
|
|
||||||
|
|
||||||
|
class Net(nn.Cell):
|
||||||
|
def __init__(self):
|
||||||
|
super(Net, self).__init__()
|
||||||
|
self.unique = P.Unique()
|
||||||
|
|
||||||
|
def construct(self, x):
|
||||||
|
return self.unique(x)
|
||||||
|
|
||||||
|
|
||||||
|
class UniqueSquare(nn.Cell):
|
||||||
|
def __init__(self):
|
||||||
|
super(UniqueSquare, self).__init__()
|
||||||
|
self.unique = P.Unique()
|
||||||
|
self.square = P.Square()
|
||||||
|
|
||||||
|
def construct(self, x):
|
||||||
|
x, _ = self.unique(x)
|
||||||
|
return self.square(x)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_arm_ascend_training
|
||||||
|
@pytest.mark.platform_x86_ascend_training
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
def test_unique_cpu():
|
||||||
|
x = Tensor(np.array([1, 1, 2, 2, 3, 3]), mstype.int32)
|
||||||
|
unique = Net()
|
||||||
|
output = unique(x)
|
||||||
|
expect1 = np.array([1, 2, 3])
|
||||||
|
expect2 = np.array([0, 0, 1, 1, 2, 2])
|
||||||
|
assert (output[0].asnumpy() == expect1).all()
|
||||||
|
assert (output[1].asnumpy() == expect2).all()
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_arm_ascend_training
|
||||||
|
@pytest.mark.platform_x86_ascend_training
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
def test_unique_square():
|
||||||
|
x = Tensor(np.array([1, 1, 2, 2, 3, 3]), mstype.int32)
|
||||||
|
net = UniqueSquare()
|
||||||
|
output = net(x)
|
||||||
|
expect1 = np.array([1, 4, 9])
|
||||||
|
assert (output.asnumpy() == expect1).all()
|
Loading…
Reference in new issue