!11120 [cpu] add P.FloorDiv to cpu

From: @yanglf1121
Reviewed-by: @kisnwang
Signed-off-by:
pull/11120/MERGE
mindspore-ci-bot 4 years ago committed by Gitee
commit a1cb402763

@ -102,6 +102,29 @@ void ArithmeticCPUKernel::Div(const T *input1, const T *input2, T *out, size_t s
}
}
template <typename T>
void ArithmeticCPUKernel::FloorDiv(const T *input1, const T *input2, T *out, size_t start, size_t end) {
for (size_t i = start; i < end; i++) {
std::vector<size_t> idx;
GenIndex(i, &idx);
auto dividend = input1[idx[0]];
auto divisor = input2[idx[1]];
if (divisor == 0) {
if (dividend == 0) {
out[i] = std::numeric_limits<T>::quiet_NaN();
continue;
}
if (std::numeric_limits<T>::has_infinity) {
out[i] = dividend > 0 ? std::numeric_limits<T>::infinity() : -std::numeric_limits<T>::infinity();
} else {
out[i] = dividend > 0 ? std::numeric_limits<T>::max() : std::numeric_limits<T>::min();
}
continue;
}
out[i] = floor(dividend / divisor);
}
}
template <typename T>
void ArithmeticCPUKernel::Mod(const T *input1, const T *input2, T *out, size_t start, size_t end) {
for (size_t i = start; i < end; i++) {
@ -207,6 +230,8 @@ void ArithmeticCPUKernel::InitKernel(const CNodePtr &kernel_node) {
operate_type_ = REALDIV;
} else if (kernel_name == prim::kPrimDiv->name()) {
operate_type_ = DIV;
} else if (kernel_name == prim::kPrimFloorDiv->name()) {
operate_type_ = FLOORDIV;
} else if (kernel_name == prim::kPrimMod->name()) {
operate_type_ = MOD;
} else if (kernel_name == prim::kPrimPow->name()) {
@ -389,6 +414,8 @@ void ArithmeticCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs, co
threads.emplace_back(std::thread(&ArithmeticCPUKernel::RealDiv<T>, this, input1, input2, output, start, end));
} else if (operate_type_ == DIV) {
threads.emplace_back(std::thread(&ArithmeticCPUKernel::Div<T>, this, input1, input2, output, start, end));
} else if (operate_type_ == FLOORDIV) {
threads.emplace_back(std::thread(&ArithmeticCPUKernel::FloorDiv<T>, this, input1, input2, output, start, end));
} else if (operate_type_ == MOD) {
threads.emplace_back(std::thread(&ArithmeticCPUKernel::Mod<T>, this, input1, input2, output, start, end));
} else if (operate_type_ == POW) {

@ -50,6 +50,8 @@ class ArithmeticCPUKernel : public CPUKernel {
template <typename T>
void Div(const T *input1, const T *input2, T *out, size_t start, size_t end);
template <typename T>
void FloorDiv(const T *input1, const T *input2, T *out, size_t start, size_t end);
template <typename T>
void Mod(const T *input1, const T *input2, T *out, size_t start, size_t end);
template <typename T>
void Pow(const T *input1, const T *input2, T *out, size_t start, size_t end);
@ -117,6 +119,16 @@ MS_REG_CPU_KERNEL(
MS_REG_CPU_KERNEL(
Div, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
ArithmeticCPUKernel);
MS_REG_CPU_KERNEL(
FloorDiv, KernelAttr().AddInputAttr(kNumberTypeInt64).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64),
ArithmeticCPUKernel);
MS_REG_CPU_KERNEL(
FloorDiv, KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
ArithmeticCPUKernel);
MS_REG_CPU_KERNEL(
FloorDiv,
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
ArithmeticCPUKernel);
MS_REG_CPU_KERNEL(
Mod, KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
ArithmeticCPUKernel);

@ -67,6 +67,7 @@ enum OperateType {
SQRT,
POW,
REALDIV,
FLOORDIV,
MOD,
NEG,
LESS,

@ -261,6 +261,7 @@ inline const PrimitivePtr kPrimInplaceAdd = std::make_shared<Primitive>("Inplace
inline const PrimitivePtr kPrimInplaceSub = std::make_shared<Primitive>("InplaceSub");
inline const PrimitivePtr kPrimPow = std::make_shared<Primitive>("Pow");
inline const PrimitivePtr kPrimRealDiv = std::make_shared<Primitive>("RealDiv");
inline const PrimitivePtr kPrimFloorDiv = std::make_shared<Primitive>("FloorDiv");
inline const PrimitivePtr kPrimSqrt = std::make_shared<Primitive>("Sqrt");
inline const PrimitivePtr kPrimSqrtGrad = std::make_shared<Primitive>("SqrtGrad");
inline const PrimitivePtr kPrimReciprocal = std::make_shared<Primitive>("Reciprocal");

@ -42,6 +42,15 @@ class DivNet(nn.Cell):
return self.div(x, y)
class FloorDivNet(nn.Cell):
def __init__(self):
super(FloorDivNet, self).__init__()
self.floor_div = P.FloorDiv()
def construct(self, x, y):
return self.floor_div(x, y)
class ModNet(nn.Cell):
def __init__(self):
super(ModNet, self).__init__()
@ -156,6 +165,71 @@ def test_div():
assert output7.shape == expect7.shape
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_floor_div():
prop = 1 if np.random.random() < 0.5 else -1
x0_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop
y0_np = np.random.randint(1, 100, (2, 1, 4, 4)).astype(np.float32) * prop
x1_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.float16) * prop
y1_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float16) * prop
x2_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.int32) * prop
y2_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.int32) * prop
x3_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.int32) * prop
y3_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop
x4_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.int64) * prop
y4_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.int64) * prop
x0 = Tensor(x0_np)
y0 = Tensor(y0_np)
x1 = Tensor(x1_np)
y1 = Tensor(y1_np)
x2 = Tensor(x2_np)
y2 = Tensor(y2_np)
x3 = Tensor(x3_np)
y3 = Tensor(y3_np)
x4 = Tensor(x4_np)
y4 = Tensor(y4_np)
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
floor_div = FloorDivNet()
output0 = floor_div(x0, y0)
expect0 = np.floor_divide(x0_np, y0_np)
diff0 = output0.asnumpy() - expect0
error0 = np.ones(shape=expect0.shape) * 1.0e-5
assert np.all(diff0 < error0)
assert output0.shape == expect0.shape
output1 = floor_div(x1, y1)
expect1 = np.floor_divide(x1_np, y1_np)
diff1 = output1.asnumpy() - expect1
error1 = np.ones(shape=expect1.shape) * 1.0e-5
assert np.all(diff1 < error1)
assert output1.shape == expect1.shape
output2 = floor_div(x2, y2)
expect2 = np.floor_divide(x2_np, y2_np).astype(np.float16)
diff2 = output2.asnumpy() - expect2
error2 = np.ones(shape=expect2.shape) * 1.0e-5
assert np.all(diff2 < error2)
assert output2.shape == expect2.shape
output3 = floor_div(x3, y3)
expect3 = np.floor_divide(x3_np, y3_np)
diff3 = output3.asnumpy() - expect3
error3 = np.ones(shape=expect3.shape) * 1.0e-5
assert np.all(diff3 < error3)
assert output3.shape == expect3.shape
output4 = floor_div(x4, y4)
expect4 = np.floor_divide(x4_np, y4_np)
diff4 = output4.asnumpy() - expect4
error4 = np.ones(shape=expect4.shape) * 1.0e-5
assert np.all(diff4 < error4)
assert output4.shape == expect4.shape
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
@ -249,6 +323,8 @@ def test_mod():
assert np.all(output7.asnumpy() == expect7)
assert output6.shape == expect6.shape
test_sub()
test_div()
test_floor_div()
test_mod()

Loading…
Cancel
Save