!8290 modify example

From: @lijiaqi0612
Reviewed-by: @liangchenghui,@kingxian
Signed-off-by: @liangchenghui
pull/8290/MERGE
mindspore-ci-bot 4 years ago committed by Gitee
commit a8478839c9

@ -337,7 +337,7 @@ class Adam(Optimizer):
"""If the input value is set to "CPU", the parameters will be updated on the host using the Fused """If the input value is set to "CPU", the parameters will be updated on the host using the Fused
optimizer operation.""" optimizer operation."""
if not isinstance(value, str): if not isinstance(value, str):
raise ValueError("The value must be str type, but got value type is {}".format(type(value))) raise TypeError("The value must be str type, but got value type is {}".format(type(value)))
if value not in ('CPU', 'Ascend'): if value not in ('CPU', 'Ascend'):
raise ValueError("The value must be 'CPU' or 'Ascend', but got value {}".format(value)) raise ValueError("The value must be 'CPU' or 'Ascend', but got value {}".format(value))

@ -190,7 +190,7 @@ class FTRL(Optimizer):
"""If the input value is set to "CPU", the parameters will be updated on the host using the Fused """If the input value is set to "CPU", the parameters will be updated on the host using the Fused
optimizer operation.""" optimizer operation."""
if not isinstance(value, str): if not isinstance(value, str):
raise ValueError("The value must be str type, but got value type is {}".format(type(value))) raise TypeError("The value must be str type, but got value type is {}".format(type(value)))
if value not in ('CPU', 'Ascend'): if value not in ('CPU', 'Ascend'):
raise ValueError("The value must be 'CPU' or 'Ascend', but got value {}".format(value)) raise ValueError("The value must be 'CPU' or 'Ascend', but got value {}".format(value))

@ -255,7 +255,7 @@ class LazyAdam(Optimizer):
"""If the input value is set to "CPU", the parameters will be updated on the host using the Fused """If the input value is set to "CPU", the parameters will be updated on the host using the Fused
optimizer operation.""" optimizer operation."""
if not isinstance(value, str): if not isinstance(value, str):
raise ValueError("The value must be str type, but got value type is {}".format(type(value))) raise TypeError("The value must be str type, but got value type is {}".format(type(value)))
if value not in ('CPU', 'Ascend'): if value not in ('CPU', 'Ascend'):
raise ValueError("The value must be 'CPU' or 'Ascend', but got value {}".format(value)) raise ValueError("The value must be 'CPU' or 'Ascend', but got value {}".format(value))

@ -159,7 +159,7 @@ class ProximalAdagrad(Optimizer):
"""If the input value is set to "CPU", the parameters will be updated on the host using the Fused """If the input value is set to "CPU", the parameters will be updated on the host using the Fused
optimizer operation.""" optimizer operation."""
if not isinstance(value, str): if not isinstance(value, str):
raise ValueError("The value must be str type, but got value type is {}".format(type(value))) raise TypeError("The value must be str type, but got value type is {}".format(type(value)))
if value not in ('CPU', 'Ascend'): if value not in ('CPU', 'Ascend'):
raise ValueError("The value must be 'CPU' or 'Ascend', but got value {}".format(value)) raise ValueError("The value must be 'CPU' or 'Ascend', but got value {}".format(value))

@ -79,13 +79,13 @@ class DynamicLossScaleUpdateCell(Cell):
>>> net_with_loss = Net() >>> net_with_loss = Net()
>>> optimizer = nn.Momentum(net_with_loss.trainable_params(), learning_rate=0.1, momentum=0.9) >>> optimizer = nn.Momentum(net_with_loss.trainable_params(), learning_rate=0.1, momentum=0.9)
>>> manager = nn.DynamicLossScaleUpdateCell(loss_scale_value=2**12, scale_factor=2, scale_window=1000) >>> manager = nn.DynamicLossScaleUpdateCell(loss_scale_value=2**12, scale_factor=2, scale_window=1000)
>>> train_network = nn.TrainOneStepWithLossScaleCell(net_with_loss, optimizer, scale_update_cell=manager) >>> train_network = nn.TrainOneStepWithLossScaleCell(net_with_loss, optimizer, scale_sense=manager)
>>> train_network.set_train() >>> train_network.set_train()
>>> >>>
>>> inputs = Tensor(np.ones([16, 16]).astype(np.float32)) >>> inputs = Tensor(np.ones([16, 16]).astype(np.float32))
>>> label = Tensor(np.zeros([16, 16]).astype(np.float32)) >>> label = Tensor(np.zeros([16, 16]).astype(np.float32))
>>> scaling_sens = Tensor(np.full((1), np.finfo(np.float32).max), dtype=mindspore.float32) >>> scaling_sens = Tensor(np.full((1), np.finfo(np.float32).max), dtype=mindspore.float32)
>>> output = train_network(inputs, label, scaling_sens) >>> output = train_network(inputs, label, scale_sense=scaling_sens)
""" """
def __init__(self, def __init__(self,
@ -145,13 +145,13 @@ class FixedLossScaleUpdateCell(Cell):
>>> net_with_loss = Net() >>> net_with_loss = Net()
>>> optimizer = nn.Momentum(net_with_loss.trainable_params(), learning_rate=0.1, momentum=0.9) >>> optimizer = nn.Momentum(net_with_loss.trainable_params(), learning_rate=0.1, momentum=0.9)
>>> manager = nn.FixedLossScaleUpdateCell(loss_scale_value=2**12) >>> manager = nn.FixedLossScaleUpdateCell(loss_scale_value=2**12)
>>> train_network = nn.TrainOneStepWithLossScaleCell(net_with_loss, optimizer, scale_update_cell=manager) >>> train_network = nn.TrainOneStepWithLossScaleCell(net_with_loss, optimizer, scale_sense=manager)
>>> train_network.set_train() >>> train_network.set_train()
>>> >>>
>>> inputs = Tensor(np.ones([16, 16]).astype(np.float32)) >>> inputs = Tensor(np.ones([16, 16]).astype(np.float32))
>>> label = Tensor(np.zeros([16, 16]).astype(np.float32)) >>> label = Tensor(np.zeros([16, 16]).astype(np.float32))
>>> scaling_sens = Tensor(np.full((1), np.finfo(np.float32).max), dtype=mindspore.float32) >>> scaling_sens = Tensor(np.full((1), np.finfo(np.float32).max), dtype=mindspore.float32)
>>> output = train_network(inputs, label, scaling_sens) >>> output = train_network(inputs, label, scale_sense=scaling_sens)
""" """
def __init__(self, loss_scale_value): def __init__(self, loss_scale_value):

Loading…
Cancel
Save